These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 5619363)
1. The influence of electrokinetic charge and deformability of the red blood cell on the flow properties of its suspensions. Seaman GV; Swank RL Biorheology; 1967 Jan; 4(2):47-59. PubMed ID: 5619363 [No Abstract] [Full Text] [Related]
2. Deformation and aggregation in the rheology of erythrocyte suspensions. Goodwin JW; Seaman GV; Brooks DE Bibl Anat; 1969; 10():124-31. PubMed ID: 4948067 [No Abstract] [Full Text] [Related]
4. Effect of high osmotic media on blood viscosity and red blood cell deformability. Yamamoto A; Niimi H Biorheology; 1983; 20(5):615-22. PubMed ID: 6677281 [TBL] [Abstract][Full Text] [Related]
5. [Changes in flow properties of the blood in pregnancy]. Heilmann L Zentralbl Gynakol; 1986; 108(7):393-402. PubMed ID: 3716677 [TBL] [Abstract][Full Text] [Related]
6. Influence of plasma osmolarity on the rheology of human blood. Meiselman HJ; Merrill EW; Gilliland ER; Pelletier GA; Salzman EW J Appl Physiol; 1967 Apr; 22(4):772-81. PubMed ID: 6023192 [No Abstract] [Full Text] [Related]
7. INFLUENCE OF FIBRINOGEN ON FLOW PROPERTIES OF ERYTHROCYTE SUSPENSIONS. WELLS RE; GAWRONSKI TH; COX PJ; PERERA RD Am J Physiol; 1964 Nov; 207():1035-40. PubMed ID: 14237445 [No Abstract] [Full Text] [Related]
8. Comparative rheology of nucleated and non-nucleated red blood cells. II. Rheological properties of avian red cells suspensions in narrow capillaries. Gaehtgens P; Will G; Schmidt F Pflugers Arch; 1981 Jun; 390(3):283-7. PubMed ID: 7196029 [TBL] [Abstract][Full Text] [Related]
9. Dynamic evaluation of aggregation and agglutination of red blood cells. Kaibara M; Date M; Fukada E Biorheology Suppl; 1984; 1():43-7. PubMed ID: 6591997 [TBL] [Abstract][Full Text] [Related]
10. Rheology and hemodynamics. Cokelet GR Annu Rev Physiol; 1980; 42():311-24. PubMed ID: 6996583 [No Abstract] [Full Text] [Related]
11. The flow behavior of lysolecithin-induced echinocytes. Rogausch H Biorheology; 1984; 21(6):757-65. PubMed ID: 6518288 [TBL] [Abstract][Full Text] [Related]
13. [Flow characteristics of blood and its therapeutic modification]. Reinhart WH Schweiz Med Wochenschr; 1987 May; 117(18):693-7. PubMed ID: 3589626 [TBL] [Abstract][Full Text] [Related]
14. Influence of neuraminidase on the characteristics of microrheology of red blood cells. Wen Z; Yao W; Xie L; Yan ZY; Chen K; Ka W; Sun D Clin Hemorheol Microcirc; 2000; 23(1):51-7. PubMed ID: 11214713 [TBL] [Abstract][Full Text] [Related]
15. Rheological properties of blood and their possible role in the circulation and development of intracranial hemorrhage in preterm infants. Linderkamp O; Betke K Klin Padiatr; 1985; 197(4):319-21. PubMed ID: 4046488 [TBL] [Abstract][Full Text] [Related]
16. Physicochemical effects of aldehydes on the human erythrocyte. Vassar PS; Hards JM; Brooks DE; Hagenberger B; Seaman GV J Cell Biol; 1972 Jun; 53(3):809-18. PubMed ID: 5028261 [TBL] [Abstract][Full Text] [Related]
17. Time-dependent reaction of human red cell deformability on sphering agents. Rogausch H Pflugers Arch; 1976 Mar; 362(2):121-6. PubMed ID: 944418 [TBL] [Abstract][Full Text] [Related]
19. Comparison of rheological effects of isoviscous concentrations of dextran 40 and 150 upon erythrocyte aggregation and cell viscosity. Bygdeman S; Wells R Bibl Anat; 1969; 10():16-9. PubMed ID: 5407357 [No Abstract] [Full Text] [Related]
20. Model particles and red cells in flowing concentrated suspensions. Goldsmith HL; Mason SG Bibl Anat; 1969; 10():1-8. PubMed ID: 5407361 [No Abstract] [Full Text] [Related] [Next] [New Search]