These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 5619364)
1. Laminar regime transition for blood flow in tubes. Hershey D; Smolin R Biorheology; 1967 Jan; 4(2):61-7. PubMed ID: 5619364 [No Abstract] [Full Text] [Related]
2. Pulsing blood flow in capillary tubes. McComis WT; Charm SE; Kurland G Am J Physiol; 1967 Jan; 212(1):49-53. PubMed ID: 6016014 [No Abstract] [Full Text] [Related]
3. Changes in hematocrit for blood flow in narrow tubes. Hochmuth RM; Davis DO Bibl Anat; 1969; 10():59-65. PubMed ID: 5407420 [No Abstract] [Full Text] [Related]
4. RHEOLOGY IN MEDICINE AND SURGERY. DINTENFASS L Med J Aust; 1964 Dec; 2():926-30. PubMed ID: 14232466 [No Abstract] [Full Text] [Related]
5. On the polar fluid as a model for blood flow in tubes. Cowin SC Biorheology; 1972 Mar; 9(1):23-5. PubMed ID: 4647689 [No Abstract] [Full Text] [Related]
6. Capillary pore rheology of erythrocytes. V. The glass capillary array--effect of velocity and haematocrit in long bore tubes. Lingard PS Microvasc Res; 1979 May; 17(3 Pt 1):272-89. PubMed ID: 459940 [No Abstract] [Full Text] [Related]
7. The effect of red blood cell flexibility on blood flow through tubes with diameters in the range 30 to 500 microns. Seshadri V; McKay C; Jaffrin MY Biorheology; 1979; 16(6):473-83. PubMed ID: 534770 [No Abstract] [Full Text] [Related]
8. The laminar flow of a composite fluid: an approach to the rheology of blood. Nubar Y Ann N Y Acad Sci; 1966 Feb; 136(2):35-57. PubMed ID: 5223530 [No Abstract] [Full Text] [Related]
9. Blood flow in capillary tubes: curvature and gravity effects. Hung TC; Hung TK; Bugliarello G Biorheology; 1980; 17(4):331-42. PubMed ID: 7260345 [No Abstract] [Full Text] [Related]
10. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter. Reinke W; Johnson PC; Gaehtgens P Circ Res; 1986 Aug; 59(2):124-32. PubMed ID: 3742742 [TBL] [Abstract][Full Text] [Related]
11. A theoretical analysis of the effects of varying fibrinogen concentration and haematocrit on the flow characteristics of blood in cylindrical tubes. Rampling MW; Challoner T Biorheology; 1983; 20(2):141-52. PubMed ID: 6871430 [TBL] [Abstract][Full Text] [Related]
12. A preliminary study of rheology of granulocytes. Adell R; Skalak R; Branemark PI Blut; 1970 Aug; 21(2):91-105. PubMed ID: 5505159 [No Abstract] [Full Text] [Related]
13. Hematocrit, viscosity and blood flow velocity in men and women. Itzchak Y; Silberberger A; Modan M; Adar R; Deutsch V Isr J Med Sci; 1977 Jan; 13(1):80-2. PubMed ID: 838574 [No Abstract] [Full Text] [Related]
14. Blood viscosity in tube flow: dependence on diameter and hematocrit. Pries AR; Neuhaus D; Gaehtgens P Am J Physiol; 1992 Dec; 263(6 Pt 2):H1770-8. PubMed ID: 1481902 [TBL] [Abstract][Full Text] [Related]
15. Mathematical concepts of blood flow and blood rheology. Trowbridge EA Life Support Syst; 1984; 2(1):25-38. PubMed ID: 6471908 [No Abstract] [Full Text] [Related]
18. Effect of slip on the rheology of a composite fluid: application to blood. Nubar Y Biorheology; 1967 Sep; 4(4):133-50. PubMed ID: 5619588 [No Abstract] [Full Text] [Related]