BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 562131)

  • 21. Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats.
    Wang M; Wang R; Zhang X; Ungerfeld EM; Long D; Mao H; Jiao J; Beauchemin KA; Tan Z
    Br J Nutr; 2017 Sep; 118(6):401-410. PubMed ID: 28927478
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pretreatment of lignocellulosic biomass by cattle rumen fluid for methane production: Bacterial flora and enzyme activity analysis.
    Baba Y; Matsuki Y; Mori Y; Suyama Y; Tada C; Fukuda Y; Saito M; Nakai Y
    J Biosci Bioeng; 2017 Apr; 123(4):489-496. PubMed ID: 28143676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens.
    Bauchop T; Mountfort DO
    Appl Environ Microbiol; 1981 Dec; 42(6):1103-10. PubMed ID: 16345902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous hydrogen production during fermentation of alpha-cellulose by the thermophillic bacterium Clostridium thermocellum.
    Magnusson L; Cicek N; Sparling R; Levin D
    Biotechnol Bioeng; 2009 Feb; 102(3):759-66. PubMed ID: 18828175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats.
    Braun M; Schoberth S; Gottschalk G
    Arch Microbiol; 1979 Mar; 120(3):201-4. PubMed ID: 571704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glucose metabolism of Treponema bryantii, an anaerobic rumen spirochete.
    Stanton TB
    Can J Microbiol; 1984 May; 30(5):526-31. PubMed ID: 6744124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Methane fermentation of rubber (Hevea brasiliensis) latex effluent.
    Rajagopalan K
    Can J Microbiol; 1976 Mar; 22(3):342-6. PubMed ID: 1252994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Succinic acid production by rumen bacteria. I. Isolation and metabolism of Ruminococcus flavefaciens.
    Hopgood MF; Walker DJ
    Aust J Biol Sci; 1967 Feb; 20(1):165-82. PubMed ID: 6034342
    [No Abstract]   [Full Text] [Related]  

  • 29. Interspecies H2 transfer in cellulose degradation between fibrolytic bacteria and H2-utilizing microorganisms from the human colon.
    Robert C; Del'Homme C; Bernalier-Donadille A
    FEMS Microbiol Lett; 2001 Dec; 205(2):209-14. PubMed ID: 11750804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diverse hydrogen production and consumption pathways influence methane production in ruminants.
    Greening C; Geier R; Wang C; Woods LC; Morales SE; McDonald MJ; Rushton-Green R; Morgan XC; Koike S; Leahy SC; Kelly WJ; Cann I; Attwood GT; Cook GM; Mackie RI
    ISME J; 2019 Oct; 13(10):2617-2632. PubMed ID: 31243332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of co-cultivation with the acetogen Acetitomaculum ruminis on the fermentative metabolism of the rumen fungi Neocallimastix patriciarum and Neocallimastix sp. strain L2.
    Rees EM; Lloyd D; Williams AG
    FEMS Microbiol Lett; 1995 Nov; 133(1-2):175-80. PubMed ID: 8566705
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formate as an intermediate in the bovine rumen fermentation.
    Hungate RE; Smith W; Bauchop T; Yu I; Rabinowitz JC
    J Bacteriol; 1970 May; 102(2):389-97. PubMed ID: 5419259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fermentations by saccharolytic intestinal bacteria.
    Miller TL; Wolin MJ
    Am J Clin Nutr; 1979 Jan; 32(1):164-72. PubMed ID: 760499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rumen
    Kaminsky RA; Reid PM; Altermann E; Kenters N; Kelly WJ; Noel SJ; Attwood GT; Janssen PH
    Appl Environ Microbiol; 2023 Oct; 89(10):e0063423. PubMed ID: 37800930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formate-removing inoculum dominated by Methanobacterium congolense supports succinate production from crude glycerol fermentation.
    Kim NY; Lee CM; Kim SY; Kim OB
    J Ind Microbiol Biotechnol; 2019 May; 46(5):625-634. PubMed ID: 30783892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria.
    Chen M; Wolin MJ
    Appl Environ Microbiol; 1979 Jul; 38(1):72-7. PubMed ID: 16345418
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction between H2-producing and non-H2-producing cellulolytic bacteria from the human colon.
    Chassard C; Gaillard-Martinie B; Bernalier-Donadille A
    FEMS Microbiol Lett; 2005 Jan; 242(2):339-44. PubMed ID: 15621457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissimilatory metabolism of nitrate by the rumen microbiota.
    Jones GA
    Can J Microbiol; 1972 Dec; 18(12):1783-7. PubMed ID: 4675328
    [No Abstract]   [Full Text] [Related]  

  • 39. Improved assay for quantitating adherence of ruminal bacteria to cellulose.
    Rasmussen MA; White BA; Hespell RB
    Appl Environ Microbiol; 1989 Aug; 55(8):2089-91. PubMed ID: 2782879
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria.
    Chen J; Weimer P
    Microbiology (Reading); 2001 Jan; 147(Pt 1):21-30. PubMed ID: 11160797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.