These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
59 related articles for article (PubMed ID: 5623105)
1. [Antimonite oxidation by a new culture of thiobacteria]. Lialikova NN Dokl Akad Nauk SSSR; 1967 Sep; 176(6):1432-4. PubMed ID: 5623105 [No Abstract] [Full Text] [Related]
2. [Oxidation of trivalent antimony to higher oxides as a source of energy for the development of a new autotrophic organism Stibiobacter gen. n]. Lialikova NN Dokl Akad Nauk SSSR; 1972 Aug; 205(5):1228-9. PubMed ID: 5086126 [No Abstract] [Full Text] [Related]
3. [Manganese oxidizing bacteria. III. Growth and oxidation of manganese by Pseudomonas manganoxidans Schw]. Jung WK; Schweisfurth R Z Allg Mikrobiol; 1976; 16(8):587-97. PubMed ID: 12622 [No Abstract] [Full Text] [Related]
4. Oxidation of metal sulfides by Thiobacillus ferrooxidans grown on different substrates. Silver M; Torma AE Can J Microbiol; 1974 Feb; 20(2):141-7. PubMed ID: 4822784 [No Abstract] [Full Text] [Related]
5. [Carbon dioxide fixation by a growing population of aquatic bacteria]. Zolotukhin NV Izv Akad Nauk SSSR Biol; 1970; 1():58-63. PubMed ID: 4992503 [No Abstract] [Full Text] [Related]
6. Sulphur and carbon isotope fractionation by Salmonella heidelberg during anaerobic SO3= reduction in trypticase soy broth medium. Krouse HR; Sasaki A Can J Microbiol; 1968 Apr; 14(4):417-22. PubMed ID: 5646842 [No Abstract] [Full Text] [Related]
7. Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44. Cai L; Rensing C; Li X; Wang G Appl Microbiol Biotechnol; 2009 Jun; 83(4):715-25. PubMed ID: 19283378 [TBL] [Abstract][Full Text] [Related]
8. Kinetics of microbial oxidation of n-heptane. I. Characterization of the process. Cağlar MA; Thompson AR; Houston CW; Rose VC Biotechnol Bioeng; 1969 May; 11(3):417-26. PubMed ID: 4898122 [No Abstract] [Full Text] [Related]
12. Characterization of a novel biocatalyst system for sulfide oxidation. McComas C; Sublette KL; Jenneman G; Bala G Biotechnol Prog; 2001; 17(3):439-46. PubMed ID: 11386863 [TBL] [Abstract][Full Text] [Related]
13. [Stibiobacter senarmontii--a new microorganism oxidizing antimony]. Lialikova NN Mikrobiologiia; 1974; 43(6):941-8. PubMed ID: 4449497 [No Abstract] [Full Text] [Related]
14. [Biological oxidation of sulfide raw material using a culture of Thiobacillus ferrooxidans under various conditions of leaching]. Fomchenko NV; Slavkina OV; Biriukov VV Prikl Biokhim Mikrobiol; 2003; 39(1):92-6. PubMed ID: 12625048 [TBL] [Abstract][Full Text] [Related]
16. Monitoring biological sulphide oxidation processes using combined respirometric and titrimetric techniques. Munz G; Gori R; Mori G; Lubello C Chemosphere; 2009 Jul; 76(5):644-50. PubMed ID: 19450866 [TBL] [Abstract][Full Text] [Related]
17. A biocatalyst for the removal of sulfite from alcoholic beverages. Lin SC; Georgiou G Biotechnol Bioeng; 2005 Jan; 89(1):123-7. PubMed ID: 15540199 [TBL] [Abstract][Full Text] [Related]
18. Bacterial ecologies in limonite. Vishniac W Life Sci Space Res; 1965; 3():139-41. PubMed ID: 12199258 [TBL] [Abstract][Full Text] [Related]
19. [Effect of carbon dioxide on bioenergetic and biosynthetic processes in hydrogen bacteria]. Zolotukhin NV Biofizika; 1972; 17(1):161-4. PubMed ID: 4621881 [No Abstract] [Full Text] [Related]
20. Ethanol utilization by sulfate-reducing bacteria: an experimental and modeling study. Nagpal S; Chuichulcherm S; Livingston A; Peeva L Biotechnol Bioeng; 2000 Dec; 70(5):533-43. PubMed ID: 11042550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]