These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 562672)
1. Interactions of oxytocin with bovine neurophysins I and II. Use of 13C nuclear magnetic resonance and hormones specifically enriched with 13C in the glycinamide-9 and half-cystine-1 positions. Blumenstein M; Hruby VJ Biochemistry; 1977 Nov; 16(24):5169-77. PubMed ID: 562672 [No Abstract] [Full Text] [Related]
2. Carbon-13 nuclear magnetic resonance studies of the binding of selectively 13C-enriched oxytocins to the neurophypophyseal protein, bovine neurophysin II. Griffin JH; DiBello C; Alazard R; Nicolas P; Cohen P Biochemistry; 1977 Sep; 16(19):4194-8. PubMed ID: 561612 [TBL] [Abstract][Full Text] [Related]
3. Investigation of the interactions of oxytocin with neurophysins at low pH using carbon-13 nuclear magnetic resonance and carbon-13-labeled hormones. Blumenstein M; Hruby VJ; Viswanatha V Biochemistry; 1979 Aug; 18(16):3552-7. PubMed ID: 38833 [TBL] [Abstract][Full Text] [Related]
4. 13C nuclear magnetic resonance studies of the interactions of bovine neurophysins with (1-hemi-(1-13C)cystine)oxytocin and (1-hemi-(1-13C)cystine,8-arginine)vasopressin. Blumenstein M; Hruby VJ; Yamamoto D; Yang Y FEBS Lett; 1977 Sep; 81(2):347-50. PubMed ID: 923806 [No Abstract] [Full Text] [Related]
5. Studies of the interaction of bovine neurophysin-II with [1-hemi-D-(3-13C)cystine] oxytocin and [1-hemi-(3-13C)cystine] oxytocin. Deslauriers R; Smith IC; Stahl GL; Walter R Int J Pept Protein Res; 1979 Jan; 13(1):78-87. PubMed ID: 33931 [No Abstract] [Full Text] [Related]
6. Selectively enriched 13C-labeled proline-7 and 13C-labeled leucine-8 ocytocins as probes for the analysis of peptide hormone interactions with bovine neurophysin I using 13C nuclear magnetic resonance spectroscopy. Convert O; Griffin JH; Di Bello C; Nicolas P; Cohen P Biochemistry; 1977 Nov; 16(23):5061-5. PubMed ID: 562184 [No Abstract] [Full Text] [Related]
7. Drug-biomolecule interactions: proton magnetic resonance studies of complex formation between bovine neurophysins and oxytocin at molecular level. Griffin JH; Cohen JS; Cohen P; Camier M J Pharm Sci; 1975 Mar; 64(3):507-11. PubMed ID: 239193 [TBL] [Abstract][Full Text] [Related]
8. Carbon-13 nuclear magnetic resonance studies of the interaction of specifically labeled (90%-13C) oxytocin and arginine vasopressin with neurophysins. Blumenstein M; Hruby VJ Biochem Biophys Res Commun; 1976 Feb; 68(4):1052-8. PubMed ID: 1267763 [No Abstract] [Full Text] [Related]
10. Complex formation between bovine neurophysin-I and oxytocin, vasopressin, and tripeptide analogs of their NH2-terminal region. Absorbance and circular dichroism difference spectroscopic studies. Griffin JH; Alazard R; Cohen P J Biol Chem; 1973 Dec; 248(23):7975-8. PubMed ID: 4796247 [No Abstract] [Full Text] [Related]
11. Carbon-13 chemical shifts on oxytocin as a consequence of its interaction with neurophysins. Blumenstein M; Hruby VJ; Viswanatha V; Chaturvedi D Biochemistry; 1984 May; 23(10):2153-61. PubMed ID: 6733077 [TBL] [Abstract][Full Text] [Related]
12. Interactions of bovine neurophysin II with oxytocin and (8-lysine) vasopressin. High resolution proton nuclear magnetic resonance spectroscopy studies. Alazard R; Cohen P; Cohen JS; Griffin JH J Biol Chem; 1974 Nov; 249(21):6895-900. PubMed ID: 4423570 [No Abstract] [Full Text] [Related]
13. Thermodynamics and kinetics of bovine neurophysins binding to small peptide analogues of oxytocin and vasopressin. Pearlmutter AF; Dalton EJ Biochemistry; 1980 Jul; 19(15):3550-6. PubMed ID: 7407058 [TBL] [Abstract][Full Text] [Related]
14. Nuclear magnetic resonance studies of the interaction of peptides and hormones with bovine neurophysin. Balaram P; Bothner-By AA; Breslow E Biochemistry; 1973 Nov; 12(23):4695-704. PubMed ID: 4797991 [No Abstract] [Full Text] [Related]
15. Evidence from hydrogen-1 and carbon-13 nuclear magnetic resonance studies that the dissociation rate of oxytocin from bovine neurophysin at neutral pH is slow. Blumenstein M; Hruby VJ; Yamamoto DM Biochemistry; 1978 Nov; 17(23):4971-7. PubMed ID: 31171 [No Abstract] [Full Text] [Related]
16. Conformational preferences and binding to neurophysins of oxytocin analogs with sarcosine or N-methylalanine in position 7. Grzonka Z; Mishra PK; Bothner-By AA Int J Pept Protein Res; 1985 Apr; 25(4):375-81. PubMed ID: 2410380 [TBL] [Abstract][Full Text] [Related]
17. Interactions of Sepharose-bound neurophysin I and II with oxytocin and vasopressin. Fukuda H; Hayakawa T; Kawamura J Chem Pharm Bull (Tokyo); 1980 Nov; 28(11):3418-22. PubMed ID: 7214614 [No Abstract] [Full Text] [Related]
18. On the mechanism of binding of neurohypophyseal hormones and analogs to neurophysins. Breslow E Ann N Y Acad Sci; 1975 Feb; 248():423-41. PubMed ID: 1054557 [No Abstract] [Full Text] [Related]
19. Effect of low pH on neurophysin-peptide interactions: implications for the stability of the amino-carboxylate salt bridge. Breslow E; Gargiulo P Biochemistry; 1977 Jul; 16(15):3397-406. PubMed ID: 19050 [No Abstract] [Full Text] [Related]
20. The behavior of the active site salt bridge of bovine neurophysins as monitored by 15N NMR spectroscopy and chemical substitution. Relationship to biochemical properties. Zheng C; Cahill S; Breslow E Biochemistry; 1996 Sep; 35(36):11763-72. PubMed ID: 8794757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]