These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 562750)
1. [The hemolytic properties of the membrane modifying peptide antibiotics alamethicin, suzukacillin and trichotoxin (author's transl)]. Irmscher G; Jung G Eur J Biochem; 1977 Oct; 80(1):165-74. PubMed ID: 562750 [No Abstract] [Full Text] [Related]
2. Interaction of membrane modifying peptide antibiotics from Trichoderma viride with leukocytes. Bessler WG; Ottenbreit B; Irmscher G; Jung G Biochem Biophys Res Commun; 1979 Mar; 87(1):99-105. PubMed ID: 88224 [No Abstract] [Full Text] [Related]
3. Structural and membrane modifying porperties of suzukacillin, a peptide antibiotic related to alamethicin. Part B. Pore formation in black lipid films. Boheim G; Janko K; Leibfritz D; Ooka T; König WA; Jung G Biochim Biophys Acta; 1976 Apr; 433(1):182-99. PubMed ID: 1260058 [TBL] [Abstract][Full Text] [Related]
4. Structural and membrane modifying properties of suzukacillin, a peptide antibiotic related to alamethicin. Part A. Sequence and conformation. Jung G; König WA; Leibfritz D; Ooka T; Janko K; Boheim G Biochim Biophys Acta; 1976 Apr; 433(1):164-81. PubMed ID: 1260057 [TBL] [Abstract][Full Text] [Related]
5. In vitro and in vivo antitrypanosomal activities of three peptide antibiotics: leucinostatin A and B, alamethicin I and tsushimycin. Ishiyama A; Otoguro K; Iwatsuki M; Namatame M; Nishihara A; Nonaka K; Kinoshita Y; Takahashi Y; Masuma R; Shiomi K; Yamada H; Omura S J Antibiot (Tokyo); 2009 Jun; 62(6):303-8. PubMed ID: 19407848 [TBL] [Abstract][Full Text] [Related]
6. Paracelsin; characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active mold Trichoderma reesei. Part B. Brückner H; Graf H; Bokel M Experientia; 1984 Nov; 40(11):1189-97. PubMed ID: 6500005 [TBL] [Abstract][Full Text] [Related]
7. Proline at position 14 of alamethicin is essential for hemolytic activity, catecholamine secretion from chromaffin cells and enhanced metabolic activity in endothelial cells. Dathe M; Kaduk C; Tachikawa E; Melzig MF; Wenschuh H; Bienert M Biochim Biophys Acta; 1998 Mar; 1370(1):175-83. PubMed ID: 9518597 [TBL] [Abstract][Full Text] [Related]
8. Trichotoxin A40. Purification by counter-current distribution and sequencing of isolated fragments. Brückner H; König WA; Aydin M; Jung G Biochim Biophys Acta; 1985 Jan; 827(1):51-62. PubMed ID: 2578292 [TBL] [Abstract][Full Text] [Related]
9. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Matsuzaki K; Sugishita K; Fujii N; Miyajima K Biochemistry; 1995 Mar; 34(10):3423-9. PubMed ID: 7533538 [TBL] [Abstract][Full Text] [Related]
10. Trichoderma viride cellulase induces resistance to the antibiotic pore-forming peptide alamethicin associated with changes in the plasma membrane lipid composition of tobacco BY-2 cells. Aidemark M; Tjellström H; Sandelius AS; Stålbrand H; Andreasson E; Rasmusson AG; Widell S BMC Plant Biol; 2010 Dec; 10():274. PubMed ID: 21156059 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic analysis of incorporation and aggregation in a membrane: application to the pore-forming peptide alamethicin. Schwarz G; Stankowski S; Rizzo V Biochim Biophys Acta; 1986 Sep; 861(1):141-51. PubMed ID: 3756150 [TBL] [Abstract][Full Text] [Related]
12. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp. Shi WL; Chen XL; Wang LX; Gong ZT; Li S; Li CL; Xie BB; Zhang W; Shi M; Li C; Zhang YZ; Song XY J Exp Bot; 2016 Apr; 67(8):2191-205. PubMed ID: 26850879 [TBL] [Abstract][Full Text] [Related]
14. Lipid dependence of peptide-membrane interactions. Bilayer affinity and aggregation of the peptide alamethicin. Stankowski S; Schwarz G FEBS Lett; 1989 Jul; 250(2):556-60. PubMed ID: 2753150 [TBL] [Abstract][Full Text] [Related]
15. Autocatalytic transport of the peptide antibiotics suzukacillin and alamethicin across lipid membranes. Schindler H FEBS Lett; 1979 Aug; 104(1):157-60. PubMed ID: 477976 [No Abstract] [Full Text] [Related]
16. Interactions of antibiotics of the iturin group with human erythrocytes. Latoud C; Peypoux F; Michel G; Genet R; Morgat JL Biochim Biophys Acta; 1986 Apr; 856(3):526-35. PubMed ID: 3964695 [TBL] [Abstract][Full Text] [Related]
17. Detergent-like effects of alamethicin on lymphocyte plasma membranes. Bonnafous JC; Dornand J; Mani JC Biochem Biophys Res Commun; 1979 Feb; 86(3):536-44. PubMed ID: 218578 [No Abstract] [Full Text] [Related]
18. Membrane permeabilization of a mammalian neuroendocrine cell type (PC12) by the channel-forming peptides zervamicin, alamethicin, and gramicidin. Weidema AF; Kropacheva TN; Raap J; Ypey DL Chem Biodivers; 2007 Jun; 4(6):1347-59. PubMed ID: 17589868 [TBL] [Abstract][Full Text] [Related]
19. Sigmoidal concentration dependence of antimicrobial peptide activities: a case study on alamethicin. Chen FY; Lee MT; Huang HW Biophys J; 2002 Feb; 82(2):908-14. PubMed ID: 11806932 [TBL] [Abstract][Full Text] [Related]
20. Cyclodextrin-scaffolded alamethicin with remarkably efficient membrane permeabilizing properties and membrane current conductance. Hjørringgaard CU; Vad BS; Matchkov VV; Nielsen SB; Vosegaard T; Nielsen NC; Otzen DE; Skrydstrup T J Phys Chem B; 2012 Jul; 116(26):7652-9. PubMed ID: 22676384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]