These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 562904)
1. 3H estradiol in catecholamine neurons of rat brain stem: combined localization by autoradiography and formaldehyde-induced fluorescence. Heritage AS; Grant LD; Stumpf WE J Comp Neurol; 1977 Dec; 176(4):607-30. PubMed ID: 562904 [TBL] [Abstract][Full Text] [Related]
2. (3-H)-dihydrotestosterone in catecholamine neurons of rat brain stem: combined localization by autoradiography and formaldehyde-induced fluorescence. Heritage AS; Stumpf WE; Sar M; Grant LD J Comp Neurol; 1981 Aug; 200(2):289-307. PubMed ID: 7287923 [TBL] [Abstract][Full Text] [Related]
3. Combined autoradiography and formaldehyde-induced fluorescence methods for localization of radioactively labeled substances in relation to monoamine neurons. Grant LD; Stumpf WE J Histochem Cytochem; 1981 Jan; 29(1A Suppl):175-80. PubMed ID: 7053241 [TBL] [Abstract][Full Text] [Related]
4. Differential colocalization of neuropeptide Y- and methionine-enkephalin-Arg6-Gly7-Leu8-like immunoreactivity in catecholaminergic neurons in the rat brain stem. Murakami S; Okamura H; Pelletier G; Ibata Y J Comp Neurol; 1989 Mar; 281(4):532-44. PubMed ID: 2708579 [TBL] [Abstract][Full Text] [Related]
5. Central noradrenergic neurones concentrate 3H-oestradiol. Sar M; Stumpf WE Nature; 1981 Feb; 289(5797):500-2. PubMed ID: 7464918 [TBL] [Abstract][Full Text] [Related]
6. The monoamine-containing neurons in avian brain: I. A study of the brain stem of the chicken (Gallus domesticus) by means of fluorescence and acetylcholinesterase histochemistry. Dubé L; Parent A J Comp Neurol; 1981 Mar; 196(4):695-708. PubMed ID: 6110679 [TBL] [Abstract][Full Text] [Related]
7. Comparative distribution of three opioid systems in the lower brainstem of the monkey (Macaca fuscata). Ibuki T; Okamura H; Miyazaki M; Yanaihara N; Zimmerman EA; Ibata Y J Comp Neurol; 1989 Jan; 279(3):445-56. PubMed ID: 2918080 [TBL] [Abstract][Full Text] [Related]
8. Atlas of the distribution of monoamine-containing nerve cell bodies in the brain stem of the cat. Poitras D; Parent A J Comp Neurol; 1978 Jun; 179(4):699-717. PubMed ID: 641232 [TBL] [Abstract][Full Text] [Related]
9. The organization of monoamine-containing neurons in the brain of the sunfish (Lepomis gibbosus) as revealed by fluorescence microscopy. Parent A; Dube L; Braford MR; Northcutt RG J Comp Neurol; 1978 Dec; 182(3):495-516. PubMed ID: 721968 [TBL] [Abstract][Full Text] [Related]
10. Distribution of catecholamine uptake sites in human brain as determined by quantitative [3H] mazindol autoradiography. Donnan GA; Kaczmarczyk SJ; Paxinos G; Chilco PJ; Kalnins RM; Woodhouse DG; Mendelsohn FA J Comp Neurol; 1991 Feb; 304(3):419-34. PubMed ID: 2022757 [TBL] [Abstract][Full Text] [Related]
11. Monoamine distribution in primate brain. I Catecholamine-containing perikarya in the brain stem of Macaca speciosa. Garver DL; Sladek JR J Comp Neurol; 1975 Feb; 159(3):289-304. PubMed ID: 1112914 [TBL] [Abstract][Full Text] [Related]
12. Catecholamine-synthesizing neuronal projections to the nucleus tractus solitarii of the rat. Thor KB; Helke CJ J Comp Neurol; 1988 Feb; 268(2):264-80. PubMed ID: 3360988 [TBL] [Abstract][Full Text] [Related]
13. Neuropeptide Y-immunoreactive perikarya and nerve terminals in the rat medulla oblongata: relationship to cytoarchitecture and catecholaminergic cell groups. Härfstrand A; Fuxe K; Terenius L; Kalia M J Comp Neurol; 1987 Jun; 260(1):20-35. PubMed ID: 2885349 [TBL] [Abstract][Full Text] [Related]
14. Monoamine cell distribution in the cat brain stem. A fluorescence histochemical study with quantification of indolaminergic and locus coeruleus cell groups. Wiklund L; Léger L; Persson M J Comp Neurol; 1981 Dec; 203(4):613-47. PubMed ID: 7328202 [TBL] [Abstract][Full Text] [Related]
15. Distribution of central cholinergic neurons in the baboon (Papio papio). II. A topographic atlas correlated with catecholamine neurons. Satoh K; Fibiger HC J Comp Neurol; 1985 Jun; 236(2):215-33. PubMed ID: 4056095 [TBL] [Abstract][Full Text] [Related]
16. [Bulbar and pontine sources of catecholaminergic innervation of the spinal cord of the rat studied using monoamine fluorescence and retrograde labeling technics]. Doroshenko NZ; Maĭskiĭ VA Neirofiziologiia; 1986; 18(4):503-12. PubMed ID: 3762795 [TBL] [Abstract][Full Text] [Related]
17. Topographic atlas of somatostatin-containing neuron system in the avian brain in relation to catecholamine-containing neuron system. II. Mesencephalon, rhombencephalon, and spinal cord. Shiosaka S; Takatsuki K; Inagaki S; Sakanaka M; Takagi H; Senba E; Matsuzaki T; Tohyama M J Comp Neurol; 1981 Oct; 202(1):115-24. PubMed ID: 6116725 [TBL] [Abstract][Full Text] [Related]
18. Atlas of catecholamine perikarya, varicosities and pathways in the brainstem of the cat. Jones BE; Friedman L J Comp Neurol; 1983 Apr; 215(4):382-96. PubMed ID: 6863591 [TBL] [Abstract][Full Text] [Related]
19. Origin and organization of brainstem catecholamine innervation in the rat. Levitt P; Moore RY J Comp Neurol; 1979 Aug; 186(4):505-28. PubMed ID: 15116686 [TBL] [Abstract][Full Text] [Related]
20. Alpha 2-adrenergic binding sites in the medulla oblongata of tree shrews demonstrated by in vitro autoradiography: species related differences in comparison to the rat. Flügge G; Jurdzinski A; Brandt S; Fuchs E J Comp Neurol; 1990 Jul; 297(2):253-66. PubMed ID: 1973422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]