BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 562904)

  • 21. The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker.
    Swanson LW; Hartman BK
    J Comp Neurol; 1975 Oct; 163(4):467-505. PubMed ID: 1100685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Directionally specific changes in arterial pressure induce differential patterns of fos expression in discrete areas of the rat brainstem: a double-labeling study for Fos and catecholamines.
    Murphy AZ; Ennis M; Shipley MT; Behbehani MM
    J Comp Neurol; 1994 Nov; 349(1):36-50. PubMed ID: 7852625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distribution of catecholamine and indoleamine neurons in the brain of the common marmoset (Callithrix jacchus).
    Schofield SP; Dixson AF
    J Anat; 1982 Mar; 134(Pt 2):315-38. PubMed ID: 6804424
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aromatic L-amino acid decarboxylase-immunoreactive structures in human midbrain, pons, and medulla.
    Kitahama K; Ikemoto K; Jouvet A; Araneda S; Nagatsu I; Raynaud B; Nishimura A; Nishi K; Niwa S
    J Chem Neuroanat; 2009 Oct; 38(2):130-40. PubMed ID: 19589383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nuclear uptake and retention of 3H-dihydrotestosterone or one of its metabolites in the lower brainstem of the baboon.
    Sheridan PJ; Weaker FJ
    J Neurosci Res; 1985; 13(4):515-20. PubMed ID: 4009743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Topography of the catecholamine neurons in the brain stem of the human fetus: an immunohistochemical study using antibodies to tyrosine hydroxylase].
    Takahashi H; Nakashima S; Ohama E; Takeda S; Ikuta F
    No To Shinkei; 1986 Jan; 38(1):87-97. PubMed ID: 2870726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distribution of somatostatin receptors in the adult human brainstem.
    Carpentier V; Vaudry H; Laquerrière A; Tayot J; Leroux P
    Brain Res; 1996 Sep; 734(1-2):135-48. PubMed ID: 8896819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of progestin-concentrating cells in rat brain: colocalization of [3H]ORG.2058, a synthetic progestin, and antibodies to tyrosine hydroxylase in hypothalamus by combined autoradiography and immunocytochemistry.
    Sar M
    Endocrinology; 1988 Aug; 123(2):1110-8. PubMed ID: 2899499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method.
    Lindvall O; Björklund A
    Acta Physiol Scand Suppl; 1974; 412():1-48. PubMed ID: 4531814
    [No Abstract]   [Full Text] [Related]  

  • 30. Distribution of methionine-enkephalin in the minipig brainstem.
    Sánchez ML; Vecino E; Coveñas R
    J Chem Neuroanat; 2013 May; 50-51():1-10. PubMed ID: 23538385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of medial preoptic neurons that concentrate estradiol and project to the midbrain in the rat.
    Fahrbach SE; Morrell JI; Pfaff DW
    J Comp Neurol; 1986 May; 247(3):364-82. PubMed ID: 3722443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative anatomy of the topography of catecholamine containing neuron system in the brain stem from birds to teleosts.
    Yamamoto K; Tohyama M; Shimizu N
    J Hirnforsch; 1977; 18(3):229-40. PubMed ID: 303653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Forebrain projections from cholecystokininlike-immunoreactive neurons in the rat midbrain.
    Seroogy KB; Fallon JH
    J Comp Neurol; 1989 Jan; 279(3):415-35. PubMed ID: 2918078
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distribution of 5-HT accumulating neurons in the rat brain. A radioautographic study after different modes of 3H-5-HT administration.
    Dupuy JJ; Calas A
    J Hirnforsch; 1982; 23(1):39-47. PubMed ID: 7096992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Locations of androgen-concentrating cells in the brain of Xenopus laevis: autoradiography with 3H-dihydrotestosterone.
    Kelley DB
    J Comp Neurol; 1981 Jun; 199(2):221-31. PubMed ID: 7251941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microspectrofluorimetric analysis of the formaldehyde induced fluorescence in midbrain raphe neurons.
    Jonsson G; Einarsson P; Fuxe K; Hallman H
    Med Biol; 1975 Feb; 53(1):25-39. PubMed ID: 124804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estradiol-concentrating forebrain and midbrain neurons project directly to the medulla.
    Corodimas KP; Morrell JI
    J Comp Neurol; 1990 Jan; 291(4):609-20. PubMed ID: 2329192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined Autoradiography and Formaldehyde-induced Fluorescence Methods for Localization of Radioactively Labeled Substances in Relation to Monoamine Neurons
    Grant LD; Stumpf WE
    J Histochem Cytochem; 1981 Jan; 29(1A_suppl):175-180. PubMed ID: 28054875
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autoradiographic localization of estrogen and androgen receptors in the sexually dimorphic area and other regions of the gerbil brain.
    Commins D; Yahr P
    J Comp Neurol; 1985 Jan; 231(4):473-89. PubMed ID: 3968250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [3H]dopamine and [3H]serotonin release in vitro induced by electrical stimulation in A9 and A10 dopamine regions of rat brain: characterization and responsiveness to cocaine.
    Chen NH; Reith ME
    J Pharmacol Exp Ther; 1993 Oct; 267(1):379-89. PubMed ID: 8229765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.