These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 5633283)

  • 1. [Transformation of hexoses in culture media: utilization of fructose by Clostridium aceticum Wieringa].
    el-Ghazzawi E; Schmidt K
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1967; 121(6):569-75. PubMed ID: 5633283
    [No Abstract]   [Full Text] [Related]  

  • 2. [New isolation of Clostridium aceticum Wieringa and studies on the metabolic physiology].
    El Ghazzawi E
    Arch Mikrobiol; 1967 May; 57(1):1-19. PubMed ID: 4876161
    [No Abstract]   [Full Text] [Related]  

  • 3. New isolation of Clostridium aceticum (Wieringa).
    Adamse AD
    Antonie Van Leeuwenhoek; 1980; 46(6):523-31. PubMed ID: 6786214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Fructose metabolism of Clostridium aceticum].
    Linke HA
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1969; 123(4):369-79. PubMed ID: 5395139
    [No Abstract]   [Full Text] [Related]  

  • 5. The occurrence of a modified Entner-doudoroff pathway in Clostridium aceticum.
    Andreesen JR; Gottschalk G
    Arch Mikrobiol; 1969; 69(2):160-70. PubMed ID: 5383859
    [No Abstract]   [Full Text] [Related]  

  • 6. Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide.
    Braun M; Mayer F; Gottschalk G
    Arch Microbiol; 1981 Jan; 128(3):288-93. PubMed ID: 6783001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clostridium formicoaceticum nov. spec. isolation, description and distinction from C. aceticum and C. thermoaceticum.
    Andreesen JR; Gottschalk G; Schlegel HG
    Arch Mikrobiol; 1970; 72(2):154-74. PubMed ID: 4918913
    [No Abstract]   [Full Text] [Related]  

  • 8. Hydrogen utilization by clostridia in sewage sludge.
    Ohwaki K; Hungate RE
    Appl Environ Microbiol; 1977 Jun; 33(6):1270-4. PubMed ID: 879782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of biomass yield and recombinant gene expression in Escherichia coli by using fructose as the primary carbon source.
    Aristidou AA; San KY; Bennett GN
    Biotechnol Prog; 1999; 15(1):140-5. PubMed ID: 9933525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hexoses on in vitro oocyte maturation and embryo development in pigs.
    Wongsrikeao P; Otoi T; Taniguchi M; Karja NW; Agung B; Nii M; Nagai T
    Theriogenology; 2006 Jan; 65(2):332-43. PubMed ID: 15967489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Galactose inhibition of the constitutive transport of hexoses in Saccharomyces cerevisiae.
    Nevado J; Navarro MA; Heredia CF
    Yeast; 1993 Feb; 9(2):111-9. PubMed ID: 8465600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [First results of comparative tests for sulfite-reducing Clostridium in sterilized milk].
    Fiorenza R; Cananzi F; Picerno I
    Quad Sclavo Diagn; 1973 Dec; 9(4):882-6. PubMed ID: 4369565
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization of two reserve glucans from Clostridium pasteurianum.
    Brown RG; Lindberg B; Laishley EJ
    Can J Microbiol; 1975 Jul; 21(7):1136-8. PubMed ID: 1148945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Neutral and basic compounds present in gases produced by Clostridium histolyticum, Clostridium hastiforme and Clostridium ghoni cultured under vacuum in sodium thioglycolate glucose broth].
    Rimbault A; Leluan G
    C R Seances Acad Sci III; 1982 Sep; 295(3):219-21. PubMed ID: 6817857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Utilization of some hexoses by tissue cells in vitro].
    Rerabek J
    Enzymologia; 1965 Nov; 29(3):233-50. PubMed ID: 5884311
    [No Abstract]   [Full Text] [Related]  

  • 16. [Optimization of the conditions for D-glucose isomerization to D-fructose with the glucose isomerase from Streptomyces atroolivaceus strain 700].
    Dzhezheva G; Stoĭchev M; Grigorova I; Raĭkovska V
    Acta Microbiol Bulg; 1983; 13():68-76. PubMed ID: 6650232
    [No Abstract]   [Full Text] [Related]  

  • 17. [Biosynthesis of corrinoids and other tetrapyrrole compounds by an acetogenic Clostridium].
    Bykhovskiĭ VIa; Ilarionov SA; Zaĭtseva NI
    Prikl Biokhim Mikrobiol; 1984; 20(1):3-8. PubMed ID: 6701162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of incubation time, and calcium carbonate and glucose in the growth medium, upon the fermentation end-product profile of Clostridium difficile.
    Turton LJ; Drucker DB; Ganguli LA
    Microbios; 1982; 35(139):7-16. PubMed ID: 7154979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer.
    Yu JH; Lee DH; Oh YJ; Han KC; Ryu YW; Seo JH
    Appl Biochem Biotechnol; 2006 Mar; 131(1-3):870-9. PubMed ID: 18563661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer.
    Yu JH; Lee DH; Oh YJ; Han KC; Ryu YW; Seo JH
    Appl Biochem Biotechnol; 2006; 129-132():870-9. PubMed ID: 16915695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.