These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 563490)

  • 1. Tryptic hydrolysis of glycinin and its subunits.
    Lynch CJ; Rha CK; Catsimpoolas N
    J Sci Food Agric; 1977 Nov; 28(11):971-9. PubMed ID: 563490
    [No Abstract]   [Full Text] [Related]  

  • 2. Identification of strong aggregating regions in soy glycinin upon enzymatic hydrolysis.
    Kuipers BJ; Gruppen H
    J Agric Food Chem; 2008 May; 56(10):3818-27. PubMed ID: 18461958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on soybean trypsin inhibitors. 8. Disulfide bridges in soybean Bowman-Birk proteinase inhibitor.
    Odani S; Ikenaka T
    J Biochem; 1973 Oct; 74(4):697-715. PubMed ID: 4797072
    [No Abstract]   [Full Text] [Related]  

  • 4. Limited proteolysis of beta-conglycinin and glycinin, the 7S and 11S storage globulins from soybean [Glycine max (L.) Merr.]. Structural and evolutionary implications.
    Shutov AD; Kakhovskaya IA; Bastrygina AS; Bulmaga VP; Horstmann C; Müntz K
    Eur J Biochem; 1996 Oct; 241(1):221-8. PubMed ID: 8898910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of glycinin and beta-conglycinin subunits that contribute to the increased protein content of high-protein soybean lines.
    Krishnan HB; Natarajan SS; Mahmoud AA; Nelson RL
    J Agric Food Chem; 2007 Mar; 55(5):1839-45. PubMed ID: 17266327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between the limited proteolysis of glycinin and its conformation.
    Kamata Y; Fukuda M; Sone H; Yamauchi F
    Agric Biol Chem; 1991 Jan; 55(1):149-55. PubMed ID: 1368659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in subunit composition of glycinin among soybean cultivars.
    Mori T; Utsumi S; Inaba H; Kitamura K; Harada K
    J Agric Food Chem; 1981; 29(1):20-3. PubMed ID: 7193697
    [No Abstract]   [Full Text] [Related]  

  • 8. [Primary structure of the elongation factor G from Escherichia coli. VIII. Structure of tryptic peptides comprising the T4 fragment of limited trypsinolysis of the G-factor].
    Alakhov IuB; Bundule MA; Bundulis IuP; Vinokurov LM; Kozlov VP
    Bioorg Khim; 1983 Mar; 9(3):330-42. PubMed ID: 6385999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary structure of aspartyl-tRNA synthetase from baker's yeast: tryptic and CNBr peptides.
    Hounwanou N; Boulanger Y; Reinbolt J
    Biochimie; 1983 Jul; 65(7):379-88. PubMed ID: 6414527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysinoalanine in alkali-treated proteins and factors influencing its biological activity.
    Slump P
    Ann Nutr Aliment; 1978; 32(2-3):271-9. PubMed ID: 30383
    [No Abstract]   [Full Text] [Related]  

  • 11. MALDI based identification of soybean protein markers--possible analytical targets for allergen detection in processed foods.
    Cucu T; De Meulenaer B; Devreese B
    Peptides; 2012 Feb; 33(2):187-96. PubMed ID: 22212959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action of trypsin on glycinin. Mixed-type proteolysis and its kinetics; molecular mass of glycinin-T.
    Shutov AD; Pineda J; Senyuk VI; Reva VA; Vaintraub IA
    Eur J Biochem; 1991 Aug; 199(3):539-43. PubMed ID: 1868843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limited hydrolysis of the polypeptide chain elongation factor Tu by trypsin. Isolation and characterization of the polypeptide fragments.
    Arai K; Nakamura S; Arai T; Kawakita M; Kaziro Y
    J Biochem; 1976 Jan; 79(1):69-83. PubMed ID: 939763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid analytical gel filtration chromatography. 3. Apparent molecular weight distribution of peptides produced by proteolysis.
    Catsimpoolas N
    Anal Biochem; 1974 Sep; 61(1):101-11. PubMed ID: 4606979
    [No Abstract]   [Full Text] [Related]  

  • 15. beta-Conglycinin and glycinin in high-protein soybean seeds.
    Yaklich RW
    J Agric Food Chem; 2001 Feb; 49(2):729-35. PubMed ID: 11262020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of a CM-glycinin digesting protease from soybean seeds.
    Akhtaruzzaman M; Kimura Y; Takagi S
    Biosci Biotechnol Biochem; 1993 Jul; 57(7):1119-24. PubMed ID: 7763983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of proteins from kernel of different soybean varieties.
    Zilić SM; Barać MB; Pesić MB; Mladenović Drinić SD; Ignjatović-Micić DD; Srebrić MB
    J Sci Food Agric; 2011 Jan; 91(1):60-7. PubMed ID: 20812371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The susceptibility to tryptic hydrolysis of peptide bonds involving epsilon-N-methyllysine.
    Joys TM; Kim H
    Biochim Biophys Acta; 1979 Dec; 581(2):360-2. PubMed ID: 518920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary ion mass spectra of tryptic peptides of human hemoglobin chains.
    Katakuse I; Ichihara T; Nakabushi H; Matsuo T; Matsuda H; Wada Y; Hayashi A
    Biomed Mass Spectrom; 1984 Aug; 11(8):386-91. PubMed ID: 6478045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel approach to the determination of soya protein in meat products using peptide analysis.
    Bailey FJ
    J Sci Food Agric; 1976 Sep; 27(9):827-30. PubMed ID: 987628
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.