These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 5635873)

  • 1. Effects of decreased aortic compliance on performance of the left ventricle.
    Urschel CW; Covell JW; Sonnenblick EH; Ross J; Braunwald E
    Am J Physiol; 1968 Feb; 214(2):298-304. PubMed ID: 5635873
    [No Abstract]   [Full Text] [Related]  

  • 2. Responses of left ventricle to changes in aortic input impedance.
    Ishide N; Maruyama Y; Isoyama S; Nishioka O; Takishima T
    Jpn Circ J; 1985 Feb; 49(2):215-23. PubMed ID: 3974128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Role of the characteristic impedance of the ascending aorta in the evolution of indices of left ventricular performance during the ejection stage].
    Mérillon JP; Motté G; Masquet C; Fruchaud J; Gourgon R
    Arch Mal Coeur Vaiss; 1977 Jun; 70(6):617-26. PubMed ID: 407874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of extraanatomic bypass on aortic input impedance studied in open chest dogs. Should the vascular prosthesis be compliant to unload the left ventricle?
    Morita S; Kuboyama I; Asou T; Tokunaga K; Nose Y; Nakamura M; Harasawa Y; Sunagawa K
    J Thorac Cardiovasc Surg; 1991 Nov; 102(5):774-83. PubMed ID: 1834892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normal asynchrony of left ventricular long and short axes: their relationship with aortic hemodynamics.
    Page CM; Khir AW; Hughes AD; Chung R; Henein MY
    Int J Cardiol; 2010 Jul; 142(2):166-71. PubMed ID: 19230991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coronary perfusion pressure and left ventricle function.
    Beneken JE; Guyton AC; Sagawa K
    Pflugers Arch; 1969; 305(1):76-95. PubMed ID: 5812680
    [No Abstract]   [Full Text] [Related]  

  • 7. Vascular characteristics influence the aortic ultrasound Doppler signal: computer and hydraulic model simulations.
    Sjöberg BJ; Eidenvall L; Loyd D; Wranne B; Ask P
    Acta Physiol Scand; 1993 Mar; 147(3):271-9. PubMed ID: 8475755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arterial impedance as ventricular afterload.
    Milnor WR
    Circ Res; 1975 May; 36(5):565-70. PubMed ID: 1122568
    [No Abstract]   [Full Text] [Related]  

  • 9. A physiologically relevant, simple outflow boundary model for truncated vasculature.
    Pahlevan NM; Amlani F; Hossein Gorji M; Hussain F; Gharib M
    Ann Biomed Eng; 2011 May; 39(5):1470-81. PubMed ID: 21240638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative evaluation of intra-aortic flow disturbance by the fluid momentum index: Effect of the left ventricular systolic function on the hemodynamics in the aorta.
    Nakamura M; Wada S; Yamaguchi T
    Technol Health Care; 2007; 15(2):111-20. PubMed ID: 17361055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study on the new index U2/AP in canine aortic root for left ventricular performance].
    Tsuji T; Togawa T; Kusano H; Toyoshima T; Tamura T; Nemoto T; Senda S; Morita H; Matsuo H; Fukui Y
    Kokyu To Junkan; 1985 May; 33(5):651-6. PubMed ID: 4023451
    [No Abstract]   [Full Text] [Related]  

  • 12. Arterial compliance and wave reflection.
    O'Rourke M
    Arch Mal Coeur Vaiss; 1991 Sep; 84 Spec No 3():45-8. PubMed ID: 1953285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of central arterial compliance on cerebrovascular hemodynamics: insights from endurance training intervention.
    Tomoto T; Sugawara J; Nogami Y; Aonuma K; Maeda S
    J Appl Physiol (1985); 2015 Sep; 119(5):445-51. PubMed ID: 26139214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wave propagation and reflection in the canine aorta: analysis using a reservoir-wave approach.
    Wang JJ; Shrive NG; Parker KH; Hughes AD; Tyberg JV
    Can J Cardiol; 2011; 27(3):389.e1-10. PubMed ID: 21601775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low pulse pressure with high pulsatile external left ventricular power: influence of aortic waves.
    Pahlevan NM; Gharib M
    J Biomech; 2011 Jul; 44(11):2083-9. PubMed ID: 21679951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational analysis of blood flow in an integrated model of the left ventricle and the aorta.
    Nakamura M; Wada S; Yamaguchi T
    J Biomech Eng; 2006 Dec; 128(6):837-43. PubMed ID: 17154683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood flow in a compliant vessel by the immersed boundary method.
    Kim Y; Lim S; Raman SV; Simonetti OP; Friedman A
    Ann Biomed Eng; 2009 May; 37(5):927-42. PubMed ID: 19283479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodynamic and metabolic studies during two types of left ventricular bypass.
    Pierce WS; Aaronson AE; Prophet GA; Williams DR; Waldhausen JA
    Surg Forum; 1972; 23(0):176-8. PubMed ID: 4671068
    [No Abstract]   [Full Text] [Related]  

  • 19. [Role of instantaneous blood velocity in the genesis of pressure gradients. Application of the principles of fluid mechanics to the left ventricle and the aorta].
    Pailleur CL; Ellenberger G; Guillemot R; Lafont H; Matteo JD
    Arch Mal Coeur Vaiss; 1978 Nov; 71(11):1201-8. PubMed ID: 105674
    [No Abstract]   [Full Text] [Related]  

  • 20. Cardiac performance in hypothermic woodchucks. (Marmota monax).
    Delin NA; Hoyt RK; Schenk WG
    J Cardiovasc Surg (Torino); 1967; 8(5):427-41. PubMed ID: 6060233
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.