These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 5636816)

  • 1. Proteinase enzyme system of lactic streptococci. 3. Substrate specificity of Streptococcus lactis intracellular proteinase.
    Cowman RA; Yoshimura S; Swaisgood HE
    J Bacteriol; 1968 Jan; 95(1):181-7. PubMed ID: 5636816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate specificity of the intracellular proteinase from a slow acid producing mutant of Streptococcus lactis.
    Westhoff DC; Cowman RA
    J Dairy Sci; 1971 Sep; 54(9):1265-9. PubMed ID: 5094692
    [No Abstract]   [Full Text] [Related]  

  • 3. Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins.
    Stephenson RC; Clarke S
    J Biol Chem; 1989 Apr; 264(11):6164-70. PubMed ID: 2703484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate specificity of a proteolytic enzyme isolated from a mutant of Pseudomonas fragi.
    Drapeau GR
    J Biol Chem; 1980 Feb; 255(3):839-40. PubMed ID: 7188696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tryptase from rat skin: purification and properties.
    Braganza VJ; Simmons WH
    Biochemistry; 1991 May; 30(20):4997-5007. PubMed ID: 2036367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of a novel intracellular acid proteinase from the plasmodia of a true slime mold, Physarum polycephalum.
    Murakami-Murofushi K; Takahashi T; Minowa Y; Iino S; Takeuchi T; Kitagaki-Ogawa H; Murofushi H; Takahashi K
    J Biol Chem; 1990 Nov; 265(32):19898-903. PubMed ID: 2246266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective cleavage of glycyl bonds by papaya proteinase IV.
    Buttle DJ; Ritonja A; Pearl LH; Turk V; Barrett AJ
    FEBS Lett; 1990 Jan; 260(2):195-7. PubMed ID: 2404797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aminopeptidase N from Streptococcus salivarius subsp. thermophilus NCDO 573: purification and properties.
    Midwinter RG; Pritchard GG
    J Appl Bacteriol; 1994 Sep; 77(3):288-95. PubMed ID: 7989254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation.
    Geiger T; Clarke S
    J Biol Chem; 1987 Jan; 262(2):785-94. PubMed ID: 3805008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the in vivo deamidation and isomerization of an asparaginyl residue in cytosolic serine hydroxymethyltransferase.
    Artigues A; Birkett A; Schirch V
    J Biol Chem; 1990 Mar; 265(9):4853-8. PubMed ID: 2318867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of serine-123 in the activity and specificity of ribonuclease. Reactivation of ribonuclease 1-118 by the synthetic COOH-terminal tetradecapeptide, ribonuclease 111-124, and its O-methylserine and alanine analogs.
    Hodges RS; Merrifield RB
    J Biol Chem; 1975 Feb; 250(4):1231-41. PubMed ID: 1112802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species differences and effect of incubation time on lactic streptococcal intracellular proteolytic enzyme activity.
    Schmidt RH; Morris HA; McKay LL
    J Dairy Sci; 1977 Nov; 60(11):1677-82. PubMed ID: 411810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specificity of a neutral Zn-dependent proteinase from Thermoactinomyces sacchari toward the oxidized insulin B chain.
    Georgieva DN; Stoeva S; Ivanova V; Gusterova A; Voelter W
    Curr Microbiol; 2000 Jul; 41(1):70-2. PubMed ID: 10919403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of a general aminopeptidase (St-PepN) from Streptococcus salivarius ssp. thermophilus CNRZ 302.
    Rul F; Monnet V; Gripon JC
    J Dairy Sci; 1994 Oct; 77(10):2880-9. PubMed ID: 7836577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteinase enzyme system of lactic streptococci. II. Role of membrane proteinase in cellular function.
    Cowman RA; Swaisgood HE; Speck ML
    J Bacteriol; 1967 Oct; 94(4):942-8. PubMed ID: 6072329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of Lactococcus lactis cell envelope proteinase based on gene sequencing, peptides formed after hydrolysis of milk, and computer modeling.
    Børsting MW; Qvist KB; Brockmann E; Vindeløv J; Pedersen TL; Vogensen FK; Ardö Y
    J Dairy Sci; 2015 Jan; 98(1):68-77. PubMed ID: 25465631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylation at specific altered aspartyl and asparaginyl residues in glucagon by the erythrocyte protein carboxyl methyltransferase.
    Ota IM; Ding L; Clarke S
    J Biol Chem; 1987 Jun; 262(18):8522-31. PubMed ID: 3597386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractionation of dipeptidase activities of Streptococcus lactis and dipeptidase specificity of some lactic acid bacteria.
    Sorhaug T; Solberg P
    Appl Microbiol; 1973 Mar; 25(3):388-95. PubMed ID: 4633426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative peptide specificity of cell wall, membrane and intracellular peptidases of group N streptococci.
    Kolstad J; Law BA
    J Appl Bacteriol; 1985 May; 58(5):449-55. PubMed ID: 3924874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity of a wheat gluten aspartic proteinase.
    Bleukx W; Brijs K; Torrekens S; Van Leuven F; Delcour JA
    Biochim Biophys Acta; 1998 Sep; 1387(1-2):317-24. PubMed ID: 9748641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.