These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 563731)
1. The role of holotrichs in the metabolism of dietary linoleic acid in the rumen. Girard V; Hawke JC Biochim Biophys Acta; 1978 Jan; 528(1):17-27. PubMed ID: 563731 [TBL] [Abstract][Full Text] [Related]
2. Relative significance of exogenous and de novo synthesized fatty acids in the formation of rumen microbial lipids in vitro. Demeyer DI; Henderson C; Prins RA Appl Environ Microbiol; 1978 Jan; 35(1):24-31. PubMed ID: 623468 [TBL] [Abstract][Full Text] [Related]
3. Food particles as a site for biohydrogenation of unsaturated fatty acids in the rumen. Harfoot CG; Noble RC; Moore JH Biochem J; 1973 Apr; 132(4):829-32. PubMed ID: 4721616 [TBL] [Abstract][Full Text] [Related]
4. Lipid metabolism of rumen ciliates and bacteria. I. Uptake of fatty acids by Isotricha prostoma and Entodinium simplex. GUTIERREZ J; WILLIAMS PP; DAVIS RE; WARWICK EJ Appl Microbiol; 1962 Nov; 10(6):548-51. PubMed ID: 13951437 [TBL] [Abstract][Full Text] [Related]
5. Role of the protozoan Isotricha prostoma, liquid-, and solid-associated bacteria in rumen biohydrogenation of linoleic acid. Boeckaert C; Morgavi DP; Jouany JP; Maignien L; Boon N; Fievez V Animal; 2009 Jul; 3(7):961-71. PubMed ID: 22444816 [TBL] [Abstract][Full Text] [Related]
6. The role of plant particles, bacteria and cell-free supernatant fractions of rumen contents in the hydrolysis of trilinolein and the subsequent hydrogenation of linoleic acid. Harfoot CG; Noble RC; Moore JH Antonie Van Leeuwenhoek; 1975; 41(4):533-42. PubMed ID: 1083209 [TBL] [Abstract][Full Text] [Related]
7. Lipid metabolism of rumen ciliates and bacteria. II. Uptake of fatty acids and lipid analysis of Isotricha intestinalis and rumen bacteria with further information on Entodinium simplex. WILLIAMS PP; GUTIERREZ J; DAVIS RE Appl Microbiol; 1963 May; 11(3):260-4. PubMed ID: 14000915 [TBL] [Abstract][Full Text] [Related]
8. Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria. Nam IS; Garnsworthy PC J Appl Microbiol; 2007 Sep; 103(3):551-6. PubMed ID: 17714387 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the disappearance and formation of biohydrogenation intermediates during incubations of linoleic acid with rumen fluid in vitro. Honkanen AM; Griinari JM; Vanhatalo A; Ahvenjärvi S; Toivonen V; Shingfield KJ J Dairy Sci; 2012 Mar; 95(3):1376-94. PubMed ID: 22365221 [TBL] [Abstract][Full Text] [Related]
10. Rumen ciliate protozoa contain high concentrations of conjugated linoleic acids and vaccenic acid, yet do not hydrogenate linoleic acid or desaturate stearic acid. Devillard E; McIntosh FM; Newbold CJ; Wallace RJ Br J Nutr; 2006 Oct; 96(4):697-704. PubMed ID: 17010229 [TBL] [Abstract][Full Text] [Related]
11. Steady-state rates of linoleic acid biohydrogenation by ruminal bacteria in continuous culture. Fellner V; Sauer FD; Kramer JK J Dairy Sci; 1995 Aug; 78(8):1815-23. PubMed ID: 8786265 [TBL] [Abstract][Full Text] [Related]
12. Comparative studies on the metabolism of linoleic acid by rumen bacteria, protozoa, and their mixture in vitro. Or-Rashid MM; Alzahal O; McBride BW Appl Microbiol Biotechnol; 2011 Jan; 89(2):387-95. PubMed ID: 20865258 [TBL] [Abstract][Full Text] [Related]
13. Characterizations of environmental factors in conjugated linoleic acid production by mixed rumen bacteria. Choi NJ; Park HG; Kim JH; Hwang HJ; Kwon KH; Yoon JA; Kwon EG; Chang J; Hwang IH; Kim YJ J Agric Food Chem; 2009 Oct; 57(19):9263-7. PubMed ID: 19754193 [TBL] [Abstract][Full Text] [Related]
14. Ruminal biohydrogenation of linoleoyl methionine and calcium linoleate in sheep. Fotouhi N; Jenkins TC J Anim Sci; 1992 Nov; 70(11):3607-14. PubMed ID: 1459921 [TBL] [Abstract][Full Text] [Related]
16. Effect of in vitro docosahexaenoic acid supplementation to marine algae-adapted and unadapted rumen inoculum on the biohydrogenation of unsaturated fatty acids in freeze-dried grass. Vlaeminck B; Mengistu G; Fievez V; de Jonge L; Dijkstra J J Dairy Sci; 2008 Mar; 91(3):1122-32. PubMed ID: 18292268 [TBL] [Abstract][Full Text] [Related]
17. The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species. Kemp P; White RW; Lander DJ J Gen Microbiol; 1975 Sep; 90(1):100-14. PubMed ID: 1236930 [TBL] [Abstract][Full Text] [Related]
18. Effects of pH and concentrations of linoleic and linolenic acids on extent and intermediates of ruminal biohydrogenation in vitro. Troegeler-Meynadier A; Nicot MC; Bayourthe C; Moncoulon R; Enjalbert F J Dairy Sci; 2003 Dec; 86(12):4054-63. PubMed ID: 14740844 [TBL] [Abstract][Full Text] [Related]
19. Studies on the production of conjugated linoleic acid from linoleic and vaccenic acids by mixed rumen protozoa. Or-Rashid MM; AlZahal O; McBride BW Appl Microbiol Biotechnol; 2008 Dec; 81(3):533-41. PubMed ID: 18797866 [TBL] [Abstract][Full Text] [Related]
20. Influence of pH on lipolysis and biohydrogenation of soybean oil by rumen contents in vitro. Van Nevel CJ; Demeyer DI Reprod Nutr Dev; 1996; 36(1):53-63. PubMed ID: 8881592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]