These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 563731)
21. Formation of octadecadienoic acid by rumen liquor of calves, cows and sheep in vitro. Sklan D; Volcani R; Budowski P J Dairy Sci; 1971 Apr; 54(4):515-9. PubMed ID: 5570087 [No Abstract] [Full Text] [Related]
22. Factors influencing the extent of biohydrogenation of linoleic acid by rumen micro-organisms in vitro. Harfoot CG; Noble RC; Moore JH J Sci Food Agric; 1973 Aug; 24(8):961-70. PubMed ID: 4731354 [No Abstract] [Full Text] [Related]
23. Kinetics of large ciliate protozoa in the rumen of cattle given sugar cane diets. Leng RA; Gill M; Kempton TJ; Rowe JB; Nolan JV; Stachiw SJ; Preston TR Br J Nutr; 1981 Sep; 46(2):371-84. PubMed ID: 6793059 [TBL] [Abstract][Full Text] [Related]
24. Fatty acid composition of ruminal bacteria and protozoa, with emphasis on conjugated linoleic acid, vaccenic acid, and odd-chain and branched-chain fatty acids. Or-Rashid MM; Odongo NE; McBride BW J Anim Sci; 2007 May; 85(5):1228-34. PubMed ID: 17145972 [TBL] [Abstract][Full Text] [Related]
25. Observations on the pattern on biohydrogenation of esterified and unesterified linoleic acid in the rumen. Noble RC; Moore JH; Harfoot CG Br J Nutr; 1974 Jan; 31(1):99-108. PubMed ID: 4810360 [No Abstract] [Full Text] [Related]
26. Selectivity in incorporation, utilization and retention of oleic and linoleic acids by human skin fibroblasts. Rosenthal MD Lipids; 1980 Oct; 15(10):838-48. PubMed ID: 7442473 [TBL] [Abstract][Full Text] [Related]
27. Accumulation of trans C18:1 fatty acids in the rumen after dietary algal supplementation is associated with changes in the Butyrivibrio community. Boeckaert C; Vlaeminck B; Fievez V; Maignien L; Dijkstra J; Boon N Appl Environ Microbiol; 2008 Nov; 74(22):6923-30. PubMed ID: 18820074 [TBL] [Abstract][Full Text] [Related]
28. The incorporation of long-chain fatty acids into lipids by rumen bacteria and the effect on biohydrogenation. Hawke JC Biochim Biophys Acta; 1971 Nov; 248(2):167-70. PubMed ID: 5130449 [No Abstract] [Full Text] [Related]
29. The hydrogenation of the series of methylene-interrupted cis,cis-octadecadienoic acids by pure cultures of six rumen bacteria. Kemp P; Lander DJ; Holman RT Br J Nutr; 1984 Jul; 52(1):171-7. PubMed ID: 6743637 [TBL] [Abstract][Full Text] [Related]
30. Metabolism of fatty acids and their incorporation into phospholipids of the mitochondria and endoplasmic reticulum in isolated hepatocytes determined by isolation of fluorescence derivatives. Jakobsson A; Ericsson J; Dallner G Biochim Biophys Acta; 1990 Oct; 1046(3):277-87. PubMed ID: 2223867 [TBL] [Abstract][Full Text] [Related]
31. Sequestration of holotrich protozoa in the reticulo-rumen of cattle. Abe M; Iriki T; Tobe N; Shibui H Appl Environ Microbiol; 1981 Mar; 41(3):758-65. PubMed ID: 7224634 [TBL] [Abstract][Full Text] [Related]
32. Isolation of a rumen bacterium that hydrogenates oleic acid as well as linoleic acid and linolenic acid. White RW; Kemp P; Dawson RM Biochem J; 1970 Feb; 116(4):767-8. PubMed ID: 5435501 [No Abstract] [Full Text] [Related]
33. Bacterial protein degradation by different rumen protozoal groups. Belanche A; de la Fuente G; Moorby JM; Newbold CJ J Anim Sci; 2012 Dec; 90(12):4495-504. PubMed ID: 22829613 [TBL] [Abstract][Full Text] [Related]
34. Factors affecting conjugated linoleic acid and trans-C18:1 fatty acid production by mixed ruminal bacteria. Martin SA; Jenkins TC J Anim Sci; 2002 Dec; 80(12):3347-52. PubMed ID: 12542176 [TBL] [Abstract][Full Text] [Related]
35. Effect of high-oil corn or added corn oil on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets. Duckett SK; Andrae JG; Owens FN J Anim Sci; 2002 Dec; 80(12):3353-60. PubMed ID: 12542177 [TBL] [Abstract][Full Text] [Related]
36. The biohydrogenation of linoleamide in vitro and its effects on linoleic acid concentration in duodenal contents of sheep. Jenkins TC; Adams CS J Anim Sci; 2002 Feb; 80(2):533-40. PubMed ID: 11881938 [TBL] [Abstract][Full Text] [Related]
37. Ricinoleic acid inhibits methanogenesis and fatty acid biohydrogenation in ruminal digesta from sheep and in bacterial cultures. Ramos Morales E; Mata Espinosa MA; McKain N; Wallace RJ J Anim Sci; 2012 Dec; 90(13):4943-50. PubMed ID: 22829608 [TBL] [Abstract][Full Text] [Related]
38. In vitro studies of fatty acid metabolism in vitamin B6 deficient rats. Dussault PE; Lepage M J Nutr; 1979 Jan; 109(1):138-41. PubMed ID: 430206 [TBL] [Abstract][Full Text] [Related]
39. Incorporation of linoleic and arachidonic acids into ovine placental phospholipids in vitro. Shand JH; Noble RC Biol Neonate; 1985; 48(5):299-306. PubMed ID: 3933581 [TBL] [Abstract][Full Text] [Related]
40. Starch and oil in the donor cow diet and starch in substrate differently affect the in vitro ruminal biohydrogenation of linoleic and linolenic acids. Zened A; Troegeler-Meynadier A; Nicot MC; Combes S; Cauquil L; Farizon Y; Enjalbert F J Dairy Sci; 2011 Nov; 94(11):5634-45. PubMed ID: 22032386 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]