These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 563736)

  • 21. A sodium/proton antiporter in chromaffin-granule membranes.
    Haigh JR; Phillips JH
    Biochem J; 1989 Jan; 257(2):499-507. PubMed ID: 2539089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adenosine triphosphate in the bovine chromaffin granule.
    Phillips JH; Morton AG
    J Physiol (Paris); 1978; 74(5):503-8. PubMed ID: 34031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro interaction between bovine adrenal medullary cell membranes and chromaffin granules: protein phosphorylation and ATP requirement.
    Konings F; De Potter W
    Arch Int Pharmacodyn Ther; 1983 Apr; 262(2):315-6. PubMed ID: 6870395
    [No Abstract]   [Full Text] [Related]  

  • 24. Control of transmembrane lipid asymmetry in chromaffin granules by an ATP-dependent protein.
    Zachowski A; Henry JP; Devaux PF
    Nature; 1989 Jul; 340(6228):75-6. PubMed ID: 2544808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A characterization of the nucleotide uptake of chromaffin granules of bovine adrenal medulla.
    Aberer W; Kostron H; Huber E; Winkler H
    Biochem J; 1978 Jun; 172(3):353-60. PubMed ID: 28725
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 31P nuclear magnetic resonance study of the metabolic pools of adenosine triphosphate in cultured bovine adrenal medullary chromaffin cells.
    Painter GR; Diliberto EJ; Knoth J
    Proc Natl Acad Sci U S A; 1989 Apr; 86(7):2239-42. PubMed ID: 2928329
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adenosine triphosphate-evoked catecholamine release in chromatin granules. Osmotic lysis as a consequence of proton translocation.
    Casey RP; Njus D; Radda GK; Sehr PA
    Biochem J; 1976 Sep; 158(3):583-8. PubMed ID: 985450
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effect of ionophore Brx537A on catecholamine liberation from chromaffin granules].
    Papadopoulu-Daifotis Z
    Eksp Med Morfol; 1977; 16(4):177-82. PubMed ID: 590173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stoichiometry of catecholamine/proton exchange across the chromaffin-granule membrane.
    Phillips JH; Apps DK
    Biochem J; 1980 Oct; 192(1):273-8. PubMed ID: 6272699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An analysis of nucleotides and catecholamines in bovine medullary granules by anion exchange high pressure liquid chromatography and fluorescence. Evidence that most of the catecholamines in chromaffin granules are stored without associated ATP.
    Van Dyke K; Robinson R; Urquilla P; Smith D; Taylor M; Trush M; Wilson M
    Pharmacology; 1977; 15(5):377-91. PubMed ID: 918142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A potassium ion diffusion potential causes adrenaline uptake in chromaffin-granule 'ghosts'.
    Njus D; Radda GK
    Biochem J; 1979 Jun; 180(3):579-85. PubMed ID: 486135
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of a transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles.
    Schuldiner S; Fishkes H; Kanner BI
    Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3713-6. PubMed ID: 29292
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specificity and properties of the nucleotide carrier in chromaffin granules from bovine adrenal medulla.
    Weber A; Westhead EW; Winkler H
    Biochem J; 1983 Mar; 210(3):789-94. PubMed ID: 6307271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adrenal chromaffin granules: evidence for an ultrastructural equivalent of the proton-pumping ATPase.
    Schmidt W; Winkler H; Plattner H
    Eur J Cell Biol; 1982 Apr; 27(1):96-104. PubMed ID: 6211356
    [TBL] [Abstract][Full Text] [Related]  

  • 35. cis-Unsaturated fatty acids induce the fusion of chromaffin granules aggregated by synexin.
    Creutz CE
    J Cell Biol; 1981 Oct; 91(1):247-56. PubMed ID: 6457840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A model of biogenic amine accumulation into chromaffin granules and ghosts based on coupling to the electrochemical proton gradient.
    Johnson RG; Carty S; Scarpa A
    Fed Proc; 1982 Sep; 41(11):2746-54. PubMed ID: 7117549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The chromaffin granule: recent studies leading to a functional model for exocytosis.
    Zinder O; Pollard HB
    Essays Neurochem Neuropharmacol; 1980; 4():125-62. PubMed ID: 6993206
    [No Abstract]   [Full Text] [Related]  

  • 38. Correlation of the effects of bretylium, guanethidine, and N,N-diisopropyl-N'-isoamyl-N'-diethylaminoethylurea (P-286) on the H+ electrochemical gradient across the chromaffin granule membrane and on chromaffin granule function.
    Holz RW
    Mol Pharmacol; 1980 Nov; 18(3):606-10. PubMed ID: 7464823
    [No Abstract]   [Full Text] [Related]  

  • 39. Staining characteristics of chromaffin granules in human skin.
    MATZ LR; SKINNER SL
    Nature; 1962 May; 194():585-6. PubMed ID: 14471482
    [No Abstract]   [Full Text] [Related]  

  • 40. High-molecular-weight catecholamine--ATP aggregates are absent from the chromaffin-granule aqueous phase.
    Sen R; Sharp RR
    Biochem J; 1981 Apr; 195(1):329-32. PubMed ID: 7306058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.