These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 5638593)

  • 21. Participation of aminoacyl transfer ribonucleic acid in aminoacyl phosphatidylglycerol synthesis. II. Specificity of alanyl phosphatidylglycerol synthetase.
    Gould RM; Thornton MP; Liepkalns V; Lennarz WJ
    J Biol Chem; 1968 Jun; 243(11):3096-104. PubMed ID: 4297471
    [No Abstract]   [Full Text] [Related]  

  • 22. The biosynthesis of cell wall lipopolysaccharide in Escherichia coli. VI. Enzymatic transfer of galactose, glucose, N-acetylglucosamine, and colitose into the polymer.
    Edstrom RD; Heath EC
    J Biol Chem; 1967 Aug; 242(16):3581-8. PubMed ID: 5341482
    [No Abstract]   [Full Text] [Related]  

  • 23. Inhibition by pactamycin of the initiation of protein synthesis. Binding of N-acetylphenylalanyl transfer ribonucleic acid and polyuridylic acid to ribosomes.
    Cohen LB; Herner AE; Goldberg IH
    Biochemistry; 1969 Apr; 8(4):1312-26. PubMed ID: 4896457
    [No Abstract]   [Full Text] [Related]  

  • 24. Role of mammalian ribosomal sub-units and elongation factors in poly U-directed protein synthesis.
    Busiello E; Di Girolamo M; Felicetti L
    Biochim Biophys Acta; 1971 Jan; 228(1):289-90. PubMed ID: 5546568
    [No Abstract]   [Full Text] [Related]  

  • 25. Amino acylaminonucleoside inhibitors of protein synthesis. The effect of amino acyl ribonucleic acid on the inhibition.
    Coutsogeorgopoulos C
    Biochemistry; 1967 Jun; 6(6):1704-11. PubMed ID: 5340946
    [No Abstract]   [Full Text] [Related]  

  • 26. Incorporation into polypeptide and charging on transfer ribonucleic acid of the amino acid analog 5',5',5'-trifluoroleucine by leucine auxotrophs of Escherichia coli.
    Fenster ED; Anker HS
    Biochemistry; 1969 Jan; 8(1):269-74. PubMed ID: 4887855
    [No Abstract]   [Full Text] [Related]  

  • 27. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 3. The formation of peptide bonds by ribosomes in the absence of supernatant enzymes.
    Pestka S
    J Biol Chem; 1968 May; 243(10):2810-20. PubMed ID: 4870742
    [No Abstract]   [Full Text] [Related]  

  • 28. Biosynthesis of the peptidoglycan of bacterial cell walls. XII. Inhibition of cross-linking by penicillins and cephalosporins: studies in Staphylococcus aureus in vivo.
    Tipper DJ; Strominger JL
    J Biol Chem; 1968 Jun; 243(11):3169-79. PubMed ID: 5653196
    [No Abstract]   [Full Text] [Related]  

  • 29. Sequential addition of glycine from glycyl-tRNA to the lipid-linked precursors of cell wall peptidoglycan in Staphylococcus aureus.
    Kamiryo T; Matsuhashi M
    Biochem Biophys Res Commun; 1969 Jul; 36(2):215-22. PubMed ID: 5799640
    [No Abstract]   [Full Text] [Related]  

  • 30. Evidence for the role of aminoacyltransferase II in peptidyl transfer ribonucleic acid translocation.
    Skogerson L; Moldave K
    J Biol Chem; 1968 Oct; 243(20):5361-7. PubMed ID: 4883097
    [No Abstract]   [Full Text] [Related]  

  • 31. A simple method for following the fate of alanine-containing components in murein synthesis in Escherichia coli.
    Lugtenberg EJ; de Haan PG
    Antonie Van Leeuwenhoek; 1971; 37(4):537-52. PubMed ID: 4945310
    [No Abstract]   [Full Text] [Related]  

  • 32. Solvent and specificity. Binding and isoleucylation of phenylalanine transfer ribonucleic acid (Escherichia coli) by isoleucyl transfer ribonucleic acid synthetase from Escherichia coli.
    Yarus M
    Biochemistry; 1972 Jun; 11(12):2352-61. PubMed ID: 4337616
    [No Abstract]   [Full Text] [Related]  

  • 33. Biosynthesis of the peptidoglycan of bacterial cell walls. V. Separation of protein and lipid components of the particulate enzyme from Micrococcus lysodeikticus and purification of the endogenous lipid acceptors.
    Dietrich CP; Colucci AV; Strominger JL
    J Biol Chem; 1967 Jul; 242(13):3218-25. PubMed ID: 6027795
    [No Abstract]   [Full Text] [Related]  

  • 34. Demonstration of a guanosine triphosphate-dependent enzymatic binding of aminoacyl-ribonucleic acid to Escherichia coli ribosomes.
    Ravel JM
    Proc Natl Acad Sci U S A; 1967 Jun; 57(6):1811-6. PubMed ID: 5340636
    [No Abstract]   [Full Text] [Related]  

  • 35. The mechanism of biosynthesis and direction of chain extension of a poly-(N-acetylglucosamine 1-phosphate) from the walls of Staphylococcus lactis N.C.T.C. 2102.
    Brooks D; Baddiley J
    Biochem J; 1969 Jul; 113(4):635-42. PubMed ID: 5386184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of inhibition of protein synthesis by spiramycin.
    Ahmed A
    Biochim Biophys Acta; 1968 Aug; 166(1):205-17. PubMed ID: 4972349
    [No Abstract]   [Full Text] [Related]  

  • 37. [On the biosynthesis of murein].
    Leutgeb W; Schwarz U
    Zentralbl Bakteriol Orig; 1965 Dec; 198(1):76-80. PubMed ID: 5336935
    [No Abstract]   [Full Text] [Related]  

  • 38. Studies on the formation of transfer ribonucleic acid-ribosome complexes. II. A possible site on the 50 S subunit protecting aminoacyl transfer ribonucleic acid from deacylation.
    Pestka S
    J Biol Chem; 1967 Nov; 242(21):4939-47. PubMed ID: 4862426
    [No Abstract]   [Full Text] [Related]  

  • 39. On the mode of action of multhiomycin. I. Effects of multhiomycin on macromolecular syntheses.
    Tanaka T; Sakaguchi K; Yonehara H
    J Antibiot (Tokyo); 1970 Aug; 23(8):401-7. PubMed ID: 4989221
    [No Abstract]   [Full Text] [Related]  

  • 40. The effect of high salt concentration on fidelity of translation by Escherichia coli ribosomes.
    Chomczyński P; Szafrański P
    Acta Biochim Pol; 1971; 18(2):163-70. PubMed ID: 4939214
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.