These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 5639906)

  • 1. Cricket wing movements during stridulation.
    Davis WJ
    Anim Behav; 1968 Feb; 16(1):72-3. PubMed ID: 5639906
    [No Abstract]   [Full Text] [Related]  

  • 2. Complex wing motion during stridulation in the katydid Nastonotus foreli (Orthoptera: Tettigoniidae: Pseudophyllinae).
    Baker AA; Jonsson T; Aldridge S; Montealegre-Z F
    J Insect Physiol; 2019 Apr; 114():100-108. PubMed ID: 30898560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional morphology of tegmina-based stridulation in the relict species
    Chivers BD; Béthoux O; Sarria-S FA; Jonsson T; Mason AC; Montealegre-Z F
    J Exp Biol; 2017 Mar; 220(Pt 6):1112-1121. PubMed ID: 28082619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locust wind receptors. 3. Contribution to flight initiation and lift control.
    Camhi JM
    J Exp Biol; 1969 Apr; 50(2):363-73. PubMed ID: 5795087
    [No Abstract]   [Full Text] [Related]  

  • 5. Semi-automated system for photographing wing motion in free-flying insects.
    Brackenbury JH; Dack A
    Med Biol Eng Comput; 1992 Mar; 30(2):230-4. PubMed ID: 1453790
    [No Abstract]   [Full Text] [Related]  

  • 6. The complex stridulatory behavior of the cricket Eneoptera guyanensis Chopard (Orthoptera: Grylloidea: Eneopterinae).
    Robillard T; Desutter-Grandcolas L
    J Insect Physiol; 2011 Jun; 57(6):694-703. PubMed ID: 21315079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?
    Phan HV; Truong QT; Au TK; Park HC
    Bioinspir Biomim; 2016 Jul; 11(4):046007. PubMed ID: 27387833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dermaptera (Insecta): a guide for hind wing stretching and hind wing preservation.
    Heleodoro RA; Rafael JA
    Zootaxa; 2020 Feb; 4732(3):zootaxa.4732.3.9. PubMed ID: 32230254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wing resonances in the Australian field cricket Teleogryllus oceanicus.
    Bennet-Clark HC
    J Exp Biol; 2003 May; 206(Pt 9):1479-96. PubMed ID: 12654887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural biomechanics determine spectral purity of bush-cricket calls.
    Chivers BD; Jonsson T; Soulsbury CD; Montealegre-Z F
    Biol Lett; 2017 Nov; 13(11):. PubMed ID: 29187608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings.
    Eberle AL; Dickerson BH; Reinhall PG; Daniel TL
    J R Soc Interface; 2015 Mar; 12(104):20141088. PubMed ID: 25631565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexural stiffness in insect wings. I. Scaling and the influence of wing venation.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2979-87. PubMed ID: 12878666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stridulatory movements in eight species of Neoconocephalus (Tettigoniidae).
    Walker TJ
    J Insect Physiol; 1975 Mar; 21(3):595-603. PubMed ID: 1117156
    [No Abstract]   [Full Text] [Related]  

  • 14. Morphological observations on the wing scales in some primitive Lepidoptera (Insecta).
    Kristensen NP
    J Ultrastruct Res; 1970 Feb; 30(3):402-10. PubMed ID: 5417552
    [No Abstract]   [Full Text] [Related]  

  • 15. Biomechanical aspects of the insect wing: an analysis using the finite element method.
    Kesel AB; Philippi U; Nachtigall W
    Comput Biol Med; 1998 Jul; 28(4):423-37. PubMed ID: 9805202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin and transformation of the in-flight wing-coupling structure in Psocodea (Insecta: Paraneoptera).
    Ogawa N; Yoshizawa K
    J Morphol; 2018 Apr; 279(4):517-530. PubMed ID: 29226378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of animal movement in an ecological context: dragonfly wing damage reduces flight performance and predation success.
    Combes SA; Crall JD; Mukherjee S
    Biol Lett; 2010 Jun; 6(3):426-9. PubMed ID: 20236968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A corollary discharge mechanism modulates central auditory processing in singing crickets.
    Poulet JF; Hedwig B
    J Neurophysiol; 2003 Mar; 89(3):1528-40. PubMed ID: 12626626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microtubules and tracheole migration in wing disks of Galleria mellonella.
    Hasskarl E; Oberlander H; Stephens RE
    Dev Biol; 1973 Aug; 33(2):334-43. PubMed ID: 4789610
    [No Abstract]   [Full Text] [Related]  

  • 20. Flight-tone and wing-stroke frequency of insects and the dynamics of insect flight.
    SOTAVALTA O
    Nature; 1952 Dec; 170(4338):1057-8. PubMed ID: 13013315
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.