These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 5639906)

  • 41. Butterfly wing antineoplastic agents.
    Pettit GR; Houghton LE; Rogers NH; Coomes RM; Berger DF; Reucroft PR; Day JF; Hartwell JL; Wood HB
    Experientia; 1972 Apr; 28(4):381-2. PubMed ID: 5036539
    [No Abstract]   [Full Text] [Related]  

  • 42. Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot.
    Phan HV; Park HC
    Bioinspir Biomim; 2018 Apr; 13(3):036009. PubMed ID: 29493535
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reverse stridulatory wing motion produces highly resonant calls in a neotropical katydid (Orthoptera: Tettigoniidae: Pseudophyllinae).
    Montealegre-Z F
    J Insect Physiol; 2012 Jan; 58(1):116-24. PubMed ID: 22062685
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings.
    Fu J; Liu X; Shyy W; Qiu H
    Bioinspir Biomim; 2018 Mar; 13(3):036001. PubMed ID: 29372888
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Control of cuticle formation by wing imaginal discs in vitro.
    Nardi JB; Willis JH
    Dev Biol; 1979 Feb; 68(2):381-95. PubMed ID: 437331
    [No Abstract]   [Full Text] [Related]  

  • 46. [ONCE AGAIN ON WING PARASITISM BY THE LARVAE OF ARRENURUS (A.) PAPILLATOR (O. F. MUELL.) (ACARI, HYDRACHNELLAE) IN SYMPETRUM MERIDIONALE SELYS AND S. FONSCOLOMBEI SELYS (ODONATA)].
    MUENCHBERG P
    Z Parasitenkd; 1965 Mar; 25():375-86. PubMed ID: 14272966
    [No Abstract]   [Full Text] [Related]  

  • 47. Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle.
    Nan Y; Karásek M; Lalami ME; Preumont A
    Bioinspir Biomim; 2017 Mar; 12(2):026010. PubMed ID: 28128732
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimal pitching axis location of flapping wings for efficient hovering flight.
    Wang Q; Goosen JFL; van Keulen F
    Bioinspir Biomim; 2017 Sep; 12(5):056001. PubMed ID: 28632144
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On the autorotation of animal wings.
    Ortega-Jimenez VM; Martín-Alcántara A; Fernandez-Feria R; Dudley R
    J R Soc Interface; 2017 Jan; 14(126):. PubMed ID: 28077761
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Passive mechanism of pitch recoil in flapping insect wings.
    Ishihara D; Horie T
    Bioinspir Biomim; 2016 Dec; 12(1):016008. PubMed ID: 27995899
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evolutionary origin of insect wings from ancestral gills.
    Averof M; Cohen SM
    Nature; 1997 Feb; 385(6617):627-30. PubMed ID: 9024659
    [TBL] [Abstract][Full Text] [Related]  

  • 52. No Effect of Body Size on the Frequency of Calling and Courtship Song in the Two-Spotted Cricket, Gryllus bimaculatus.
    Miyashita A; Kizaki H; Sekimizu K; Kaito C
    PLoS One; 2016; 11(1):e0146999. PubMed ID: 26785351
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NERVOUS REGULATION OF INSECT WING FUNCTION.
    SVIDERSKII VL
    Fed Proc Transl Suppl; 1964; 23():213-7. PubMed ID: 14145638
    [No Abstract]   [Full Text] [Related]  

  • 54. Homeotic genes and the regulation and evolution of insect wing number.
    Carroll SB; Weatherbee SD; Langeland JA
    Nature; 1995 May; 375(6526):58-61. PubMed ID: 7723843
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Numerical investigation of insect wing fracture behaviour.
    Rajabi H; Darvizeh A; Shafiei A; Taylor D; Dirks JH
    J Biomech; 2015 Jan; 48(1):89-94. PubMed ID: 25468669
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Endocrine regulation of a dispersal polymorphism in winged insects: a short review.
    Lin X; Lavine LC
    Curr Opin Insect Sci; 2018 Feb; 25():20-24. PubMed ID: 29602358
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New insights on basivenal sclerites using 3D tools and homology of wing veins in Odonatoptera (Insecta).
    Jacquelin L; Desutter-Grandcolas L; Chintauan-Marquier I; Boistel R; Zheng D; Prokop J; Nel A
    Sci Rep; 2018 Jan; 8(1):238. PubMed ID: 29321486
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Variation of internal pressure during the emergence and wing expansion of Bombyx mori and Pieris brassicae].
    Moreau R
    J Insect Physiol; 1974 Aug; 20(8):1475-80. PubMed ID: 4850105
    [No Abstract]   [Full Text] [Related]  

  • 59. Coordination of wingbeat and respiration in the Canada goose. I. Passive wing flapping.
    Funk GD; Milsom WK; Steeves JD
    J Appl Physiol (1985); 1992 Sep; 73(3):1014-24. PubMed ID: 1400012
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unsteady aerodynamic forces of a flapping wing.
    Wu JH; Sun M
    J Exp Biol; 2004 Mar; 207(Pt 7):1137-50. PubMed ID: 14978056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.