These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 5639936)

  • 61. Time-resolved fluorescence spectroscopy of hematoporphyrin, mesoporphyrin, pheophorbide a and chlorin e6 in ethanol and aqueous solution.
    Roeder B; Wabnitz H
    J Photochem Photobiol B; 1987 Sep; 1(1):103-13. PubMed ID: 3149976
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Studies on the dependence of chlorophyll synthesis on protein synthesis in Euglena gracilis, together with a nomogram for determination of chlorophyll concentration.
    Kirk JT
    Planta; 1967 Jun; 78(2):200-7. PubMed ID: 24522710
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of ozone. On pyridine nucleotide reduction and phosphorylation of Euglena gracilis.
    De Koning H; Jegier Z
    Arch Environ Health; 1969 Jun; 18(6):913-6. PubMed ID: 4306084
    [No Abstract]   [Full Text] [Related]  

  • 64. Chlorophyll formation in Euglena gracilis var. bacillaris: effect of chelating agents.
    Dubash PJ; Rege DV
    J Protozool; 1970 May; 17(2):349-51. PubMed ID: 4988706
    [No Abstract]   [Full Text] [Related]  

  • 65. Metabolomics revealed the photosynthetic performance and metabolomic characteristics of Euglena gracilis under autotrophic and mixotrophic conditions.
    Gu G; Ou D; Chen Z; Gao S; Sun S; Zhao Y; Hu C; Liang X
    World J Microbiol Biotechnol; 2022 Jul; 38(9):160. PubMed ID: 35834059
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Influence of photosynthesis and chlorophyll synthesis on polypeptide accumulation in greening euglena.
    Monroy AF; Schwartzbach SD
    Plant Physiol; 1985 Apr; 77(4):811-6. PubMed ID: 16664143
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fluorescence changes during chlorophyll formation in Euglena gracilis (and other organisms) and an estimate of lamellar area as a function of age.
    Brody M; Brody SS; Levine JH
    J Protozool; 1965 Aug; 12(3):465-76. PubMed ID: 5860409
    [No Abstract]   [Full Text] [Related]  

  • 68. THE SEPARATION OF THE FORMS OF CHLOROPHYLL ALPHA AND THE ABSORPTION CHANGES IN EUGLENA DURING AGING.
    BROWN JS
    Biochim Biophys Acta; 1963 Nov; 75():299-305. PubMed ID: 14104938
    [No Abstract]   [Full Text] [Related]  

  • 69. Effect of method of preparation on the States of chlorophyll in euglena chloroplast fragments as determined by fluorescence spectroscopy.
    Brody SS; Ziegelmair CA; Samuels A; Brody M
    Plant Physiol; 1966 Dec; 41(10):1709-14. PubMed ID: 16656462
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Comparative lipid biochemistry. VI. Lipids of green and etiolated Euglena gracilis and of Blastocrithidia culicis.
    Helmy FM; Hack MH; Yaeger RG
    Comp Biochem Physiol; 1967 Nov; 23(2):565-7. PubMed ID: 6080513
    [No Abstract]   [Full Text] [Related]  

  • 71. Acetate repression of chlorophyll synthesis in Euglena gracilis.
    Buetow DE
    Nature; 1967 Mar; 213(5081):1127-8. PubMed ID: 6029794
    [No Abstract]   [Full Text] [Related]  

  • 72. Analysis of chlorophyll fluorescence spectra in some tropical plants.
    Ndao AS; Konté A; Biaye M; Faye ME; Faye NA; Wagué A
    J Fluoresc; 2005 Mar; 15(2):123-9. PubMed ID: 15883766
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Events Surrounding the Early Development of Euglena Chloroplasts: VI. Action Spectra for the Formation of Chlorophyll, Lag Elimination in Chlorophyll Synthesis, and Appearance of TPN-dependent Triose Phosphate Dehydrogenase and Alkaline DNase Activities.
    Egan JM; Dorsky D; Schiff JA
    Plant Physiol; 1975 Aug; 56(2):318-23. PubMed ID: 16659294
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Changes in intensity and spectral distribution of fluorescence. Effect of light treatment on normal and DCMU-poisoned Anacystis nidulans.
    Papageorgiou G; Govindjee
    Biophys J; 1967 Jul; 7(4):375-89. PubMed ID: 6048872
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Spectroscopic properties of Heterosigma akashiwo under iron limitation].
    Li D; Cong W; Cai Z; Shi D; Ouyang F
    Ying Yong Sheng Tai Xue Bao; 2003 Jul; 14(7):1181-4. PubMed ID: 14587348
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Production of colorless cells of Euglena gracilis by the short-term action of high and low temperatures].
    LOZINA-LOZINSKII LK; ZAAR EI
    Tsitologiia; 1961; 3():103-5. PubMed ID: 13931333
    [No Abstract]   [Full Text] [Related]  

  • 77. Kinetics of Accumulation of Ribulose-1,5-bisphosphate Carboxylase during Greening in Euglena gracilis: Nutritional Regulation.
    Freyssinet G; Freyssinet M; Buetow DE
    Plant Physiol; 1984 Jul; 75(3):858-61. PubMed ID: 16663717
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading.
    García-Sánchez MA; Serratos IN; Sosa R; Tapia-Esquivel T; González-García F; Rojas-González F; Tello-Solís SR; Palacios-Enriquez AY; Esparza Schulz JM; Arrieta A
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27455223
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Absorbance spectra of the hematochrome-like granules and eyespot of Euglena gracilis by scan-free absorbance spectral imaging A(x, y, λ) within the live cells.
    Yamashita K; Yagi T; Isono T; Nishiyama Y; Hashimoto M; Yamada K; Suzuki K; Tokunaga E
    J Plant Res; 2019 May; 132(3):431-438. PubMed ID: 30980216
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Decrease of the chlorophyll fluorescence ratio F690/F730 during greening and development of leaves.
    Hák R; Lichtenthaler HK; Rinderle U
    Radiat Environ Biophys; 1990; 29(4):329-36. PubMed ID: 2281139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.