These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 5640165)

  • 41. Interaction of ergothioneine with metal ions and metalloenzymes.
    Hanlon DP
    J Med Chem; 1971 Nov; 14(11):1084-7. PubMed ID: 5000475
    [No Abstract]   [Full Text] [Related]  

  • 42. Reinvestigation of metal ion specificity for quinone cofactor biogenesis in bacterial copper amine oxidase.
    Okajima T; Kishishita S; Chiu YC; Murakawa T; Kim M; Yamaguchi H; Hirota S; Kuroda S; Tanizawa K
    Biochemistry; 2005 Sep; 44(36):12041-8. PubMed ID: 16142901
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative properties of the antineoplastic agent, 3-ethoxy-2-oxobutyraldehyde bis(thiosemicarbazonato) copper(II) and related chelates: linear free energy correlations.
    Winkelmann DA; Bermke Y; Petering DH
    Bioinorg Chem; 1974 Apr; 3(3):261-77. PubMed ID: 4417822
    [No Abstract]   [Full Text] [Related]  

  • 44. Catalytic mechanism of inulinase from Arthrobacter sp. S37.
    Kim KY; Nascimento AS; Golubev AM; Polikarpov I; Kim CS; Kang SI; Kim SI
    Biochem Biophys Res Commun; 2008 Jul; 371(4):600-5. PubMed ID: 18395004
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Technical bulletin No. 31. Determination of uric acid in blood and in urine.
    Watts RW
    Ann Clin Biochem; 1974 Jul; 11(4):103-11. PubMed ID: 4608659
    [No Abstract]   [Full Text] [Related]  

  • 46. Role of copper ion in bacterial copper amine oxidase: spectroscopic and crystallographic studies of metal-substituted enzymes.
    Kishishita S; Okajima T; Kim M; Yamaguchi H; Hirota S; Suzuki S; Kuroda S; Tanizawa K; Mure M
    J Am Chem Soc; 2003 Jan; 125(4):1041-55. PubMed ID: 12537504
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Inductive formation of particle-bound uricase in Hydrogenomonas H16 and other aerobic bacteria].
    Kaltwasser H
    Arch Mikrobiol; 1968; 60(2):160-71. PubMed ID: 4972446
    [No Abstract]   [Full Text] [Related]  

  • 48. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion.
    Frerichs-Deeken U; Ranguelova K; Kappl R; Hüttermann J; Fetzner S
    Biochemistry; 2004 Nov; 43(45):14485-99. PubMed ID: 15533053
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Comparative studies on reductometric and enzymic methods for the determination of uric acid (author's transl)].
    Bünemann C; Kruse-Jarres JD
    Z Klin Chem Klin Biochem; 1973 Sep; 11(9):403-8. PubMed ID: 4754114
    [No Abstract]   [Full Text] [Related]  

  • 50. Inactivation of urate oxidase by a system composed of lactoperoxidase, hydrogen peroxide and bromide.
    Odajima T; Onishi M
    Cell Biochem Funct; 1998 Jun; 16(2):139-47. PubMed ID: 9637002
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recapture of [S]-allantoin, the product of the two-step degradation of uric acid, by urate oxidase.
    Gabison L; Chiadmi M; Colloc'h N; Castro B; El Hajji M; Prangé T
    FEBS Lett; 2006 Apr; 580(8):2087-91. PubMed ID: 16545381
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The purification and properties of nicotine oxidase.
    Hochstein LI; Dalton BP
    Biochim Biophys Acta; 1967 May; 139(1):56-68. PubMed ID: 4962139
    [No Abstract]   [Full Text] [Related]  

  • 53. Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone.
    Wilce MC; Dooley DM; Freeman HC; Guss JM; Matsunami H; McIntire WS; Ruggiero CE; Tanizawa K; Yamaguchi H
    Biochemistry; 1997 Dec; 36(51):16116-33. PubMed ID: 9405045
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-resolution crystal structure of copper amine oxidase from Arthrobacter globiformis: assignment of bound diatomic molecules as O2.
    Murakawa T; Hayashi H; Sunami T; Kurihara K; Tamada T; Kuroki R; Suzuki M; Tanizawa K; Okajima T
    Acta Crystallogr D Biol Crystallogr; 2013 Dec; 69(Pt 12):2483-94. PubMed ID: 24311589
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The ascorbate oxidase activity of caeruloplasmin.
    Curzon G; Young SN
    Biochim Biophys Acta; 1972 Apr; 268(1):41-8. PubMed ID: 4622934
    [No Abstract]   [Full Text] [Related]  

  • 56. Spectroscopic characterization of intermediates in the urate oxidase reaction.
    Kahn K; Tipton PA
    Biochemistry; 1998 Aug; 37(33):11651-9. PubMed ID: 9709003
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Purification and molecular properties of urate oxidase from Chlamydomonas reinhardtii.
    Alamillo JM; Cárdenas J; Pineda M
    Biochim Biophys Acta; 1991 Jan; 1076(2):203-8. PubMed ID: 1998721
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [In-vitro study of factors modifying the activity of urate oxidase].
    Desprez TH; Plouvier B; Devulder B; Tacquet A
    Lille Med; 1976 May; 21(5):433-6. PubMed ID: 820934
    [No Abstract]   [Full Text] [Related]  

  • 59. X-ray snapshots of quinone cofactor biogenesis in bacterial copper amine oxidase.
    Kim M; Okajima T; Kishishita S; Yoshimura M; Kawamori A; Tanizawa K; Yamaguchi H
    Nat Struct Biol; 2002 Aug; 9(8):591-6. PubMed ID: 12134140
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of the particulate nitrite oxidase and its component activities from the chemoautotroph Nitrobacter agilis.
    O'Kelley JC; Becker GE; Nason A
    Biochim Biophys Acta; 1970 Jun; 205(3):409-25. PubMed ID: 4394298
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.