These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 5641633)

  • 1. Excitation-contraction coupling in a barnacle muscle fiber as examined with voltage clamp technique.
    Hagiwara S; Takahashi K; Junge D
    J Gen Physiol; 1968 Feb; 51(2):157-75. PubMed ID: 5641633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. THE INITIATION OF SPIKE POTENTIAL IN BARNACLE MUSCLE FIBERS UNDER LOW INTRACELLULAR CA++.
    HAGIWARA S; NAKA KI
    J Gen Physiol; 1964 Sep; 48(1):141-62. PubMed ID: 14212145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition by hypertonic solutions of Ca-dependent electrogenesis in single crab muscle fibers.
    Suarez-Kurtz G; Sorenson AL
    J Gen Physiol; 1977 Oct; 70(4):491-505. PubMed ID: 915472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RELATION BETWEEN MEMBRANE POTENTIAL CHANGES AND TENSION IN BARNACLE MUSCLE FIBERS.
    EDWARDS C; CHICHIBU S; HAGIWARA S
    J Gen Physiol; 1964 Nov; 48(2):225-34. PubMed ID: 14225255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Length-dependent electromechanical coupling in single muscle fibers.
    Gordon AM; Ridgway EB
    J Gen Physiol; 1976 Dec; 68(6):653-69. PubMed ID: 993775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contractile activation phenomena in voltage-clamped barnacle muscle fiber.
    Caputo C; Dipolo R
    J Gen Physiol; 1978 May; 71(5):467-88. PubMed ID: 660158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the relationships between membrane potential, calcium transient and tension in single barnacle muscle fibres.
    Ashley CC; Ridgway EB
    J Physiol; 1970 Jul; 209(1):105-30. PubMed ID: 5499037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rate of action of calcium on the electrical and mechanical responses of the crayfish muscle fibers.
    Matsumura M
    Jpn J Physiol; 1978; 28(1):75-87. PubMed ID: 661013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depolarization-contraction coupling in short frog muscle fibers. A voltage clamp study.
    Caputo C; Bezanilla F; Horowicz P
    J Gen Physiol; 1984 Jul; 84(1):133-54. PubMed ID: 6611386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some effects of hypertonic solutions on contraction and excitation-contraction coupling in frog skeletal muscles.
    Gordon AM; Godt RE
    J Gen Physiol; 1970 Feb; 55(2):254-75. PubMed ID: 5415044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage clamp experiments in skeletal muscle fibres.
    Adrian RH; Chandler WK; Hodgkin AL
    J Physiol; 1966 Oct; 186(2):51P-52P. PubMed ID: 5972122
    [No Abstract]   [Full Text] [Related]  

  • 12. Inactivation of excitation-contraction coupling in rat extensor digitorum longus and soleus muscles.
    Chua M; Dulhunty AF
    J Gen Physiol; 1988 May; 91(5):737-57. PubMed ID: 3418320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of external and internal pH changes on K and Cl conductances in the muscle fiber membrane of a giant barnacle.
    Hagiwara S; Gruener R; Hayashi H; Sakata H; Grinnell AD
    J Gen Physiol; 1968 Nov; 52(5):773-92. PubMed ID: 5688083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the intracellular Ca ion concentration upon the excitability of the muscle fiber membrane of a barnacle.
    Hagiwara S; Nakajima S
    J Gen Physiol; 1966 Mar; 49(4):807-18. PubMed ID: 5943616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the role of extracellular calcium in triggering contraction in muscle fibres from barnacle under membrane potential control.
    Hidalgo J; Luxoro M; Rojas E
    J Physiol; 1979 Mar; 288():313-30. PubMed ID: 469720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of quinine on the isometric tension and intracellular calcium movements in single giant muscle fibres.
    Franciolini F
    Acta Physiol Hung; 1984; 63(2):147-51. PubMed ID: 6331068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow charge movement in mammalian skeletal muscle.
    Simon BJ; Beam KG
    J Gen Physiol; 1985 Jan; 85(1):1-19. PubMed ID: 3968530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of low-level activation on the mechanical properties of isolated frog muscle fibers.
    Lännergren J
    J Gen Physiol; 1971 Aug; 58(2):145-62. PubMed ID: 5559620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitation-contraction coupling in developing mammalian myocardium: evidence from voltage clamp studies.
    Klitzner T; Friedman WF
    Pediatr Res; 1988 Apr; 23(4):428-32. PubMed ID: 3374997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tension in skinned frog muscle fibers in solutions of varying ionic strength and neutral salt composition.
    Gordon AM; Godt RE; Donaldson SK; Harris CE
    J Gen Physiol; 1973 Nov; 62(5):550-74. PubMed ID: 4543066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.