These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 5645440)

  • 1. Denaturation of proteins in 8M urea as monitored by tryptophan fluorescence: trypsin, trypsinogen and some derivatives.
    Hopkins TR; Spikes JD
    Biochem Biophys Res Commun; 1968 Mar; 30(5):540-5. PubMed ID: 5645440
    [No Abstract]   [Full Text] [Related]  

  • 2. Denaturation of proteins in 8 M urea as monitored by tryptophan fluorescence: chymotrypsin, chymotrypsinogen and some derivatives.
    Hopkins TR; Spikes JD
    Biochem Biophys Res Commun; 1967 Aug; 28(3):480-4. PubMed ID: 6058811
    [No Abstract]   [Full Text] [Related]  

  • 3. Trypsinogen, trypsin, trypsin-substrate and trypsin-inhibitor complexes in urea solutions.
    Delaage M; Lazdunski M
    Eur J Biochem; 1968 Apr; 4(3):378-84. PubMed ID: 5690131
    [No Abstract]   [Full Text] [Related]  

  • 4. Exposure of the tyrosyl and tryptophyl residues in trypsin and trypsinogen.
    Villanueva GB; Herskovits TT
    Biochemistry; 1971 Aug; 10(18):3358-65. PubMed ID: 5165784
    [No Abstract]   [Full Text] [Related]  

  • 5. [Duration of the excited state of protein fluorescence].
    Konev SV; Kostko MIa; Pikulik LG; Chernitskiĭ EA
    Biofizika; 1966; 11(6):965-9. PubMed ID: 4914191
    [No Abstract]   [Full Text] [Related]  

  • 6. On the location of the tyrosyl and tryptophyl residues in trypsin and trypsinogen.
    Herskovits TT; Villanueva GB
    Arch Biochem Biophys; 1969 Apr; 131(1):321-2. PubMed ID: 5781731
    [No Abstract]   [Full Text] [Related]  

  • 7. Changes in the exposure of the tyrosyl and tryptophyl residues in trypsin due to diisopropylphosphoryl and benzamidine inhibition.
    Villanueva GB; Herskovits TT
    Biochemistry; 1971 Nov; 10(24):4589-94. PubMed ID: 5142621
    [No Abstract]   [Full Text] [Related]  

  • 8. [Structural study of trypsinogen and trypsin. State diagrams].
    Lazdunski M; Delaage M
    Biochim Biophys Acta; 1967 Aug; 140(3):417-34. PubMed ID: 6050448
    [No Abstract]   [Full Text] [Related]  

  • 9. Changes in conformation of insolubilized trypsin and chymotrypsin, followed by fluorescence.
    Gabel D; Steinberg IZ; Katchalski E
    Biochemistry; 1971 Dec; 10(25):4661-9. PubMed ID: 5140184
    [No Abstract]   [Full Text] [Related]  

  • 10. On the structural and functional role of carboxylates in chymotrypsinogen A: a comparison with chymotrypsin, trypsinogen and trypsin.
    Abita JP; Lazdunski M
    Biochem Biophys Res Commun; 1969 Jun; 35(5):707-12. PubMed ID: 5794088
    [No Abstract]   [Full Text] [Related]  

  • 11. STATES OF AMINO ACID RESIDUES IN PROTEINS. V. DIFFERENT REACTIVITIES WITH H2O2 OF TRYPTOPHAN RESIDUES IN LYSOZYME, PROTEINASES AND ZYMOGENS.
    HACHIMORI Y; HORINISHI H; KURIHARA K; SHIBATA K
    Biochim Biophys Acta; 1964 Nov; 93():346. PubMed ID: 14251313
    [No Abstract]   [Full Text] [Related]  

  • 12. The relation of the -amino group of trypsin to enzyme function and zymogen activation.
    Robinson NC; Neurath H; Walsh KA
    Biochemistry; 1973 Jan; 12(3):420-6. PubMed ID: 4683488
    [No Abstract]   [Full Text] [Related]  

  • 13. OXIDATION STUDIES OF INDOLES AND THE TERTIARY STRUCTURE OF PROTEINS.
    GREEN NM; WITKOP B
    Trans N Y Acad Sci; 1964 Apr; 26():659-69. PubMed ID: 14155923
    [No Abstract]   [Full Text] [Related]  

  • 14. What causes the depolarization of trypsin and trypsinogen fluorescence. Intramolecular mobility or non-radiative energy transfer?
    Turoverov KK; Kuznetsova IM
    Biophys Chem; 1986 Dec; 25(3):315-23. PubMed ID: 3828470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Luminescence of the tryptophan and tyrosine residues of trypsin.
    Arrio B; Hill M; Parquet C
    Biochimie; 1973; 55(3):283-9. PubMed ID: 4744742
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of urea denaturation on tryptophan fluorescence and nucleotide binding on tubulin studied by fluorescence and NMR spectroscopic methods.
    Kuchroo K; Maity H; Kasturi SR
    Physiol Chem Phys Med NMR; 2001; 33(2):139-51. PubMed ID: 12002688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence and protein structure. XV. Tryptophan fluorescence in helical muscle protein.
    Cowgill RW
    Biochim Biophys Acta; 1968 Dec; 168(3):431-8. PubMed ID: 5701706
    [No Abstract]   [Full Text] [Related]  

  • 18. Quenching of the fluorescence of proteins by silver nitrate.
    Chen RF
    Arch Biochem Biophys; 1973 Oct; 158(2):605-22. PubMed ID: 4592984
    [No Abstract]   [Full Text] [Related]  

  • 19. The inhibition of trypsinogen activation by low concentrations of urea.
    Radhakrishnan TM; Russo SF; Walsh KA; Neurath H
    Arch Biochem Biophys; 1969 Mar; 130(1):326-31. PubMed ID: 5778649
    [No Abstract]   [Full Text] [Related]  

  • 20. On the mechanism of action of proteolytic inhibitors. IV. Effect of 8 M urea on the stability of trypsin in trypsin-inhibitor complexes.
    Levilliers N; Péron M; Arrio B; Pudles J
    Arch Biochem Biophys; 1970 Oct; 140(2):474-83. PubMed ID: 5528741
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.