These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 5645740)
1. m-Carboxy-substituted aromatic amino acids in plant metabolism. IV. Transformation of 3-(3-carboxyphenyl)alanine into 3-(3-carboxy-4-hydroxy-phenyl)alanine in Reseda lutea L. and Reseda odorata L. Larsen PO; Sorensen H Biochim Biophys Acta; 1968 Feb; 156(1):190-1. PubMed ID: 5645740 [No Abstract] [Full Text] [Related]
2. Biosynthesis of phenylalanine, tyrosine, 3-(3-carbocyphenyl) alanine and 3-(3-carbocy-4-hydroxyphenyl) alanine in higher plants. Examples of the transformation possibilities for chorismic acid. Larsen PO; Onderka DK; Floss HG Biochim Biophys Acta; 1975 Feb; 381(2):397-408. PubMed ID: 1120151 [TBL] [Abstract][Full Text] [Related]
3. m-Carboxy-substituted aromatic amino acids in plant metabolism. II. The incorporation of shikimic acid into L-3-(3-carboxy-4-hydroxyphenyl)alanine in Reseda lutea L. Larsen PO Biochim Biophys Acta; 1966 Feb; 115(2):529-31. PubMed ID: 5943458 [No Abstract] [Full Text] [Related]
4. Intermediates in the metabolism of m-carboxy-substituted aromatic amino acids in plants. Phenylpyruvic acids, mandelic acids, and phenylglyoxylic acids. Larsen FO; Wieczorkowska E Biochim Biophys Acta; 1975 Feb; 381(2):409-15. PubMed ID: 1120152 [TBL] [Abstract][Full Text] [Related]
7. Incorporation of 2-14C tryptophan into the free amino acid spectrum of Vinca minor L. Verzár-Petri G; Váradi J; Szarvas T Acta Biol Acad Sci Hung; 1968; 19(1):75-81. PubMed ID: 5672721 [No Abstract] [Full Text] [Related]
8. Biosynthesis of ergotamine by Claviceps purpurea (Fr.) Tul. Bassett RA; Chain EB; Corbett K Biochem J; 1973 May; 134(1):1-10. PubMed ID: 4723222 [TBL] [Abstract][Full Text] [Related]
9. An autoradiographic study of the synthesis of nucleic acids and protein during the cell cycle of synchronously dividing antheridial filaments in Chara vulgaris L. Olszewska MJ; Godlewski M Folia Histochem Cytochem (Krakow); 1972; 10(3):245-56. PubMed ID: 4640880 [No Abstract] [Full Text] [Related]
10. Lack of hydroxylation-induced migration with 4-iodophenylalanine. Counsell RE; Chan PS; Weinhold PA Biochim Biophys Acta; 1970 Jul; 215(1):187-8. PubMed ID: 5494511 [No Abstract] [Full Text] [Related]
11. Occurrence of N-malonyl-D-alanine in pea seedlings. Ogawa T; Fukuda M; Sasaoka K Biochim Biophys Acta; 1973 Jan; 297(1):60-9. PubMed ID: 4144329 [No Abstract] [Full Text] [Related]
12. Transformations of 3-(3-carboxyphenyl)alanine in iris species. An example of diversity in catabolism of secondary plant products. Larsen PO; Wieczorkowska E Biochim Biophys Acta; 1978 Aug; 542(2):253-62. PubMed ID: 687660 [No Abstract] [Full Text] [Related]
13. Degradation of aromatic amino acids by fungi. I. Fate of L-phenylalanine in Schizophyllum commune. Moore K; Towers GH Can J Biochem; 1967 Nov; 45(11):1659-65. PubMed ID: 6070754 [No Abstract] [Full Text] [Related]
14. Biosynthesis of mustard oil glucosides: conversion of phenylacetaldehyde oxime and 3-phenylpropionaldehyde oxime to glucotropaeolin and gluconasturtiin. Underhill EW Eur J Biochem; 1967 Jul; 2(1):61-3. PubMed ID: 6082608 [No Abstract] [Full Text] [Related]
15. Naphthoquinone biosynthesis in higher plants. I. Studies on 2-hydroxy-1,4-naphthoquinone in Impatiens balsamina L. Chen D; Bohm BA Can J Biochem; 1966 Oct; 44(10):1389-95. PubMed ID: 5954117 [No Abstract] [Full Text] [Related]
16. Biosynthesis of phytoquinones. Biosynthetic origins of the nuclei and satellite methyl groups of plastoquinone, tocopherols and tocopherolquinones in maize shoots, bean shoots and ivy leaves. Whistance GR; Threlfall DR Biochem J; 1968 Oct; 109(4):577-95. PubMed ID: 5683508 [TBL] [Abstract][Full Text] [Related]
18. [Incorporation of amino acids into C2 mycoside of Mycobacterium avium]. Martin A; Bruneteau M; Michel G Bull Soc Chim Biol (Paris); 1969 Dec; 51(7):1231-2. PubMed ID: 5361836 [No Abstract] [Full Text] [Related]
19. The crystal structure of 3-hydroxy-3-isobutyl-2-pyrrolidone-5-carboxylic acid, lactam of 4-hydroxy-4-isobutylglutamic acid from Reseda odorata L. Kaas K; Sorensen H Acta Chem Scand A; 1977; 31(5):364-8. PubMed ID: 883458 [TBL] [Abstract][Full Text] [Related]
20. Degradation of phenylalanine and tyrosine by Sporobolomyces roseus. Moore K; Rao PV; Towers GH Biochem J; 1968 Jan; 106(2):507-14. PubMed ID: 5688927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]