These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 5645747)

  • 1. Isolation and identification of N-acetylanthracnilic acid from quinic acid metabolism by Aerobacter aerogenes.
    Ratledge C
    Biochim Biophys Acta; 1968 Feb; 156(1):215-7. PubMed ID: 5645747
    [No Abstract]   [Full Text] [Related]  

  • 2. Biosynthesis of N-acetylanthranilic acid by aromatic auxotrophs of Aerobacter aerogenes and Escherichia coli.
    Paul RC; Ratledge C
    Biochem J; 1970 Oct; 119(5):36P. PubMed ID: 4923918
    [No Abstract]   [Full Text] [Related]  

  • 3. [Formation of gallic acid from quinic acid by Enterobacter cloacae and Pseudomonas fluorescens].
    Korth H
    Arch Mikrobiol; 1973; 89(1):67-72. PubMed ID: 4632608
    [No Abstract]   [Full Text] [Related]  

  • 4. [Biosynthesis of p-aminobenzoic acid. II. Demonstration of an intermediate in a mutant of Aerobacter aerogenes].
    Altendorf KH; Bacher A; Lingens F
    Z Naturforsch B; 1969 Dec; 24(12):1602-4. PubMed ID: 4391584
    [No Abstract]   [Full Text] [Related]  

  • 5. The production of an N-acylanthranilic acid from shikimic acid and the effect on iron deficiency on the biosynthesis of other aromatic compounds by Aerobacter aerogenes.
    Ratledge C
    Biochim Biophys Acta; 1967 Jun; 141(1):55-63. PubMed ID: 6051584
    [No Abstract]   [Full Text] [Related]  

  • 6. RELATIONSHIP BETWEEN THE PRODUCTS OF AROMATIC BIOSYNTHESIS IN MYCOBACTERIUM SMEGMATIS AND AEROBACTER AEROGENES.
    RATLEDGE C
    Nature; 1964 Jul; 203():428-9. PubMed ID: 14197402
    [No Abstract]   [Full Text] [Related]  

  • 7. The occurrence of two dehydroquinases in Neurospora crassa, one constitutive and one inducible.
    Giles NH; Partridge CW; Ahmed SI; Case ME
    Proc Natl Acad Sci U S A; 1967 Nov; 58(5):1930-7. PubMed ID: 4966264
    [No Abstract]   [Full Text] [Related]  

  • 8. N-Acetylanthranilic acid biosynthesis in Aerobacter aerogenes and Escherichia coli.
    Paul RC; Ratledge C
    Biochim Biophys Acta; 1971; 230(3):451-61. PubMed ID: 4931932
    [No Abstract]   [Full Text] [Related]  

  • 9. The branchpoint of pyocyanine biosynthesis.
    Longley RP; Halliwell JE; Campbell JJ; Ingledew WM
    Can J Microbiol; 1972 Sep; 18(9):1357-63. PubMed ID: 4627194
    [No Abstract]   [Full Text] [Related]  

  • 10. THE BIOSYNTHESIS OF P-AMINOBENZOIC ACID FROM CHORISMIC ACID.
    GIBSON F; GIBSON M; COX GB
    Biochim Biophys Acta; 1964 Mar; 82():637-8. PubMed ID: 14148840
    [No Abstract]   [Full Text] [Related]  

  • 11. Metabolism of shikimate and quinate by Aspergillus niger and its regulation.
    Cain RB
    Biochem J; 1972 Apr; 127(2):15P-16P. PubMed ID: 5076648
    [No Abstract]   [Full Text] [Related]  

  • 12. Constitutive mutants in a regulatory gene exerting positive control of quinic acid catabolism in Neurospora crassa.
    Valone JA; Case ME; Giles NH
    Proc Natl Acad Sci U S A; 1971 Jul; 68(7):1555-9. PubMed ID: 5283945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quinate metabolism by lactobacilli.
    Whiting GC; Coggins RA
    Biochem J; 1969 Dec; 115(5):60P-61P. PubMed ID: 5360714
    [No Abstract]   [Full Text] [Related]  

  • 14. Further studies on anthranilate N-acetyltransferase and the metabolism of N-acetylanthranilic acid in Aerobacter aerogenes.
    Paul RC; Ratledge C
    Biochim Biophys Acta; 1973 Aug; 320(1):9-15. PubMed ID: 4748369
    [No Abstract]   [Full Text] [Related]  

  • 15. Anthranilate synthase-anthranilate 5-phosphoribosyl 1-pyrophosphate phosphoribosyltransferase from Aerobacter aerogenes.
    Egan AF; Gibson F
    Biochem J; 1972 Dec; 130(3):847-59. PubMed ID: 4352716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of quinate and shikimate in the metabolism of lactobacilli.
    Whiting GC; Coggins RA
    Antonie Van Leeuwenhoek; 1971; 37(1):33-49. PubMed ID: 5313511
    [No Abstract]   [Full Text] [Related]  

  • 17. THE BIOCHEMICAL DIFFERENCE BETWEEN CERTAIN PHENOTYPICALLY SIMILAR, BUT GENOTYPICALLY DIFFERENT, TRYPTOPHAN AUXOTROPHS OF PSEUDOMONAS AERUGINOSA.
    DOY CH
    Biochim Biophys Acta; 1964 Jul; 90():180-3. PubMed ID: 14201158
    [No Abstract]   [Full Text] [Related]  

  • 18. The role of gut bacteria in the aromatization of quinic acid in different species.
    Adamson RH; Bridges JW; Evans ME; Williams RT
    Biochem J; 1969 Mar; 112(1):17P. PubMed ID: 4975417
    [No Abstract]   [Full Text] [Related]  

  • 19. THE CONVERSION OF SHIKIMIC ACID INTO CERTAIN AROMATIC COMPOUNDS BY CELL-FREE EXTRACTS OF AEROBACTER AEROGENES AND ESCHERICHIA COLI.
    MORGAN PN; GIBSON MI; GIBSON F
    Biochem J; 1963 Nov; 89(2):229-39. PubMed ID: 14084606
    [No Abstract]   [Full Text] [Related]  

  • 20. The metabolism of quinate by Acinetobacter calco-aceticus.
    Tresguerres ME; De Torrontegui G; Cánovas JL
    Arch Mikrobiol; 1970; 70(2):110-8. PubMed ID: 5429630
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.