BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 564749)

  • 1. Milk fat globule membranes devoid of intramembranous particles.
    Zerban H; Franke WW
    Cell Biol Int Rep; 1978 Jan; 2(1):87-98. PubMed ID: 564749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze-fracture observations of the lactating rat mammary gland. Membrane events during milk fat secretion.
    Peixoto de Menezes A; Pinto da Silva P
    J Cell Biol; 1978 Mar; 76(3):767-78. PubMed ID: 632326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and dynamics of the bovine milk fat globule membrane viewed by freeze fracture.
    da Silva PP; de Menezes AP; Mather IH
    Exp Cell Res; 1980 Jan; 125(1):127-39. PubMed ID: 7351210
    [No Abstract]   [Full Text] [Related]  

  • 4. Antibodies to the major insoluble milk fat globule membrane-associated protein: specific location in apical regions of lactating epithelial cells.
    Franke WW; Heid HW; Grund C; Winter S; Freudenstein C; Schmid E; Jarasch ED; Keenan TW
    J Cell Biol; 1981 Jun; 89(3):485-94. PubMed ID: 7019216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox constituents in milk fat globule membranes and rough endoplasmic reticulum from lactating mammary gland.
    Jarasch ED; Bruder G; Keenan TW; Franke WW
    J Cell Biol; 1977 Apr; 73(1):223-41. PubMed ID: 856833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical and morphological comparison of plasma membrane and milk fat globule membrane from bovine mammary gland.
    Keenan TW; Morré DJ; Olson DE; Yunghans WN; Patton S
    J Cell Biol; 1970 Jan; 44(1):80-93. PubMed ID: 5409465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The endoplasmic reticulum and casein-containing vesicles contribute to milk fat globule membrane.
    Honvo-Houéto E; Henry C; Chat S; Layani S; Truchet S
    Mol Biol Cell; 2016 Oct; 27(19):2946-64. PubMed ID: 27535430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotene in bovine milk fat globules: observations on origin and high content in tissue mitochondria.
    Patton S; Kelly JJ; Keenan TW
    Lipids; 1980 Jan; 15(1):33-8. PubMed ID: 7360008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors related to the formation of cytoplasmic crescents on milk fat globules.
    Huston GE; Patton S
    J Dairy Sci; 1990 Aug; 73(8):2061-6. PubMed ID: 2121808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Butyrophilin, an apical plasma membrane-associated glycoprotein characteristic of lactating mammary glands of diverse species.
    Heid HW; Winter S; Bruder G; Keenan TW; Jarasch ED
    Biochim Biophys Acta; 1983 Feb; 728(2):228-38. PubMed ID: 6830779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The B-type cytochrome in endoplasmic reticulum of mammary gland epithelium and milk fat globule membranes consists of two components cytochrome b5 and cytochrome P-420.
    Bruder G; Fink A; Jarasch ED
    Exp Cell Res; 1978 Nov; 117(1):207-17. PubMed ID: 569058
    [No Abstract]   [Full Text] [Related]  

  • 12. Histo- and cytophysiology of the lactating mammary gland of the African elephant (Loxodonta africana).
    Welsch U; Feuerhake F; van Aarde R; Buchheim W; Patton S
    Cell Tissue Res; 1998 Dec; 294(3):485-501. PubMed ID: 9799466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fat droplet formation in rat lactating mammary gland and mammary carcinomas viewed by freeze-fracture.
    Peixoto de Menezes A; Pinto da Silva P
    Lab Invest; 1979 May; 40(5):545-53. PubMed ID: 108475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A freeze-fracture study of tight junction structure in sheep mammary gland epithelium during pregnancy and lactation.
    Morgan G; Wooding FB
    J Dairy Res; 1982 Feb; 49(1):1-11. PubMed ID: 7076943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoplasmic organization and quantitation of microtubules in bovine mammary epithelial cells during lactation and involution.
    Nickerson SC; Akers RM; Weinland BT
    Cell Tissue Res; 1982; 223(2):421-30. PubMed ID: 7199973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fat globule size distribution in human milk.
    Rüegg M; Blanc B
    Biochim Biophys Acta; 1981 Oct; 666(1):7-14. PubMed ID: 7295765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Goat α(s1)-casein genotype affects milk fat globule physicochemical properties and the composition of the milk fat globule membrane.
    Cebo C; Lopez C; Henry C; Beauvallet C; Ménard O; Bevilacqua C; Bouvier F; Caillat H; Martin P
    J Dairy Sci; 2012 Nov; 95(11):6215-29. PubMed ID: 22921619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monoclonal antibodies prepared against PAS-I butyrophilin and GP-55 from guinea-pig milk-fat-globule membrane bind specifically to the apical pole of secretory-epithelial cells in lactating mammary tissue.
    Johnson VG; Mather IH
    Exp Cell Res; 1985 May; 158(1):144-58. PubMed ID: 3888642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of ABCA1 and ABCG1 in milk fat globules and mammary cells--implications for milk cholesterol secretion.
    Mani O; Körner M; Ontsouka CE; Sorensen MT; Sejrsen K; Bruckmaier RM; Albrecht C
    J Dairy Sci; 2011 Mar; 94(3):1265-76. PubMed ID: 21338792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The distribution of MUC1, an apical membrane glycoprotein, in mammary epithelial cells at the resolution of the electron microscope: implications for the mechanism of milk secretion.
    Mather IH; Jack LJ; Madara PJ; Johnson VG
    Cell Tissue Res; 2001 Apr; 304(1):91-101. PubMed ID: 11383890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.