These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 5648831)

  • 1. The ionic permeability changes during acetylcholine-induced responses of Aplysia ganglion cells.
    Sato M; Austin G; Yai H; Maruhashi J
    J Gen Physiol; 1968 Mar; 51(3):321-45. PubMed ID: 5648831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane potential and resistance measurement in acinar cells from salivary glands in vitro: effect of acetylcholine.
    Nishiyama A; Petersen OH
    J Physiol; 1974 Oct; 242(1):173-88. PubMed ID: 4436820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperpolarization caused by external high potassium in snail neurons.
    Yai H
    Jpn J Physiol; 1978; 28(3):249-63. PubMed ID: 713178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of the after-hyperpolarization that follows removal of depolarizing agents from the isolated superior cervical ganglion of the rat.
    Brown DA; Brownstein MJ; Scholfield CN
    Br J Pharmacol; 1972 Apr; 44(4):651-71. PubMed ID: 4625268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increase in chloride permeability of snail neurons during high potassium-induced hyperpolarization.
    Yai H
    Jpn J Physiol; 1986; 36(6):1113-23. PubMed ID: 3599549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pancreatic acinar cells: localization of acetylcholine receptors and the importance of chloride and calcium for acetylcholine-evoked depolarization.
    Iwatsuki N; Petersen OH
    J Physiol; 1977 Aug; 269(3):723-33. PubMed ID: 894612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhythmic hyperpolarizations and depolarization of sympathetic ganglion cells induced by caffeine.
    Kuba K; Nishi S
    J Neurophysiol; 1976 May; 39(3):547-63. PubMed ID: 181543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of acetylcholine on postjunctional membrane permeability in eel electroplaque.
    Lassignal NL; Martin AR
    J Gen Physiol; 1977 Jul; 70(1):23-36. PubMed ID: 894249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological and kinetic properties of cholinergic receptors activated by multiaction interneurons in buccal ganglia of Aplysia.
    Gardner D; Kandel ER
    J Neurophysiol; 1977 Mar; 40(2):333-48. PubMed ID: 191573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of hyperpolarizations induced by glutamate and acetylcholine on Onchidium neurones.
    Oomura Y; Ooyama H; Sawada M
    J Physiol; 1974 Dec; 243(2):321-41. PubMed ID: 4449068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the slow excitatory postsynaptic potential in bullfrog sympathetic ganglion cells.
    Kuba K; Koketsu K
    Jpn J Physiol; 1976; 26(6):651-69. PubMed ID: 1088293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pancreatic acinar cells: ionic dependence of the membrane potential and acetycholine-induced depolarization.
    Matthews EK; Petersen OH
    J Physiol; 1973 Jun; 231(2):283-95. PubMed ID: 4352766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of furosemide on the resting membrane potentials and the transmitter-induced responses of the Aplysia ganglion cells.
    Nakai K; Sasaki K; Matsumoto M; Takashima K
    Tohoku J Exp Med; 1988 Sep; 156(1):79-90. PubMed ID: 3194908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylcholine-induced membrane potential changes in endothelial cells of rabbit aortic valve.
    Ohashi M; Satoh K; Itoh T
    Br J Pharmacol; 1999 Jan; 126(1):19-26. PubMed ID: 10051116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three types of acetylcholine response in bivalve heart muscle cells.
    Elliott EJ
    J Physiol; 1980 Mar; 300():283-302. PubMed ID: 7381787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of various enzymes and chemical modification reagents on the Na+- and Cl- -dependent responses of the ganglion cells to acetylcholine.
    Sato M; Maruhashi J; Yai H; Shozushima M
    Jpn J Physiol; 1983; 33(5):757-76. PubMed ID: 6321828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in cationic selectivity of the nicotinic channel at the rat ganglionic synapse: a role for chloride ions?
    Sacchi O; Rossi ML; Canella R; Fesce R
    PLoS One; 2011 Feb; 6(2):e17318. PubMed ID: 21364885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CHANGES IN THE MEMBRANE PERMEABILITY OF FROG'S SARTORIUS MUSCLE FIBERS IN CA-FREE EDTA SOLUTION.
    KIMIZUKA H; KOKETSU K
    J Gen Physiol; 1963 Nov; 47(2):379-92. PubMed ID: 14080821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actions of noradrenaline and acetylcholine on sympathetic ganglion cells.
    Kobayashi H; Libet B
    J Physiol; 1970 Jun; 208(2):353-72. PubMed ID: 5500729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divalent cations: effects on post-synaptic pharmacology of invertebrate synapses.
    Barker JL
    Brain Res; 1975 Jul; 92(2):307-23. PubMed ID: 1174955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.