BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 5649669)

  • 1. Modified model for the mechanism of freezing injury in erythrocytes.
    Meryman HT
    Nature; 1968 Apr; 218(5139):333-6. PubMed ID: 5649669
    [No Abstract]   [Full Text] [Related]  

  • 2. Human red cells under hypertonic conditions; a model system for investigating freezing damage. I. Sodium chloride.
    Farrant J; Woolgar AE
    Cryobiology; 1972 Feb; 9(1):9-15. PubMed ID: 5059683
    [No Abstract]   [Full Text] [Related]  

  • 3. Membrane leakage of solutes after thermal shock or freezing.
    Daw A; Farrant J; Morris GJ
    Cryobiology; 1973 Jun; 10(2):126-33. PubMed ID: 4723503
    [No Abstract]   [Full Text] [Related]  

  • 4. Mechanism of hemolysis of erythrocytes by freezing at near-zero temperatures. II. Investigations of factors affecting hemolysis by freezing.
    Nei T
    Cryobiology; 1968; 4(6):303-8. PubMed ID: 5746221
    [No Abstract]   [Full Text] [Related]  

  • 5. Osmotic stress as a mechanism of freezing injury.
    Meryman HT
    Cryobiology; 1971 Oct; 8(5):489-500. PubMed ID: 5156362
    [No Abstract]   [Full Text] [Related]  

  • 6. Erythrocyte changes in aqueous polyethylene glycol solutions containing sodium chloride.
    Nishio T; Hirota S; Yamashita J; Kobayashi K; Motohashi Y; Kato Y
    J Pharm Sci; 1982 Sep; 71(9):977-9. PubMed ID: 7131281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Influence of some chemical compounds on the radiation hemolysis of erythrocytes].
    Kolesnikov IuA; Shul'gina MA; Iartsev EI; Novosel'tseva SD; Bogatyrev GP
    Radiobiologiia; 1975; 15(5):671-4. PubMed ID: 1208786
    [No Abstract]   [Full Text] [Related]  

  • 8. On the mechanism of injury to slowly frozen erythrocytes.
    Pegg DE; Diaper MP
    Biophys J; 1988 Sep; 54(3):471-88. PubMed ID: 3207835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow phase hemolysis in hypotonic electrolyte solutions.
    Chan TK; LaCelle PL; Weed RI
    J Cell Physiol; 1975 Feb; 85(1):47-57. PubMed ID: 1110261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between cell injury and osmotic volume reduction: II. Red cell lysis correlates with cell volume rather than intracellular salt concentration.
    Williams RJ; Shaw SK
    Cryobiology; 1980 Dec; 17(6):530-9. PubMed ID: 7471785
    [No Abstract]   [Full Text] [Related]  

  • 11. The influx of calcium ions into human erythrocytes during cold storage.
    Long C; Mouat B
    Biochem J; 1973 Mar; 132(3):559-70. PubMed ID: 4724590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of hemolysis of human erythrocytes exposed to monosodium urate monohydrate crystals. Preliminary characterization of membrane pores.
    Jackson JK; Winternitz CI; Burt HM
    Biochim Biophys Acta; 1996 May; 1281(1):45-52. PubMed ID: 8652603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cell volume on potassium transport in human red cells.
    Poznansky M; Solomon AK
    Biochim Biophys Acta; 1972 Jul; 274(1):111-8. PubMed ID: 5044056
    [No Abstract]   [Full Text] [Related]  

  • 14. Osmotic resistance of erythrocytes in children with congenital heart disease and the effect of hypotonic solutions on erythrocytes.
    Pellar J; Lukasik E; Przystawa M
    Pol Med J; 1969; 8(3):622-8. PubMed ID: 5807567
    [No Abstract]   [Full Text] [Related]  

  • 15. Hemolysis by Saponin Is Accelerated at Hypertonic Conditions.
    Paarvanova B; Tacheva B; Savova G; Karabaliev M; Georgieva R
    Molecules; 2023 Oct; 28(20):. PubMed ID: 37894578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freezing injury to erythrocytes. II. Morphological alterations of cell membranes.
    Nei T
    Cryobiology; 1976 Jun; 13(3):287-94. PubMed ID: 1277870
    [No Abstract]   [Full Text] [Related]  

  • 17. Osmotic tolerance limits of red blood cells from umbilical cord blood.
    Zhurova M; Lusianti RE; Higgins AZ; Acker JP
    Cryobiology; 2014 Aug; 69(1):48-54. PubMed ID: 24836371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The efflux of sodium from human red blood cells.
    Eilam Y; Stein WD
    Biochim Biophys Acta; 1973 Nov; 323(4):606-19. PubMed ID: 4761094
    [No Abstract]   [Full Text] [Related]  

  • 19. Some aspects of the osmotic lysis of erythrocytes. II. Differences in osmotic behaviour of erythrocytes after treatment with electrolyte and non-electrolyte solutions.
    Wessels JM; Veerkamp JH
    Biochim Biophys Acta; 1973 Jan; 291(1):178-89. PubMed ID: 4684608
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of lysophosphatidylcholine on salt permeability through the erythrocyte membrane under haemolytic conditions.
    Eskelinen S
    Gen Physiol Biophys; 1986 Dec; 5(6):637-47. PubMed ID: 3557104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.