These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 5650077)

  • 1. Effect of thiol-binding reagents on the metabolism of Chromatium D.
    Hurlbert RE
    J Bacteriol; 1968 May; 95(5):1706-12. PubMed ID: 5650077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of oxygen on viability and substrate utilization in Chromatium.
    Hurlbert RE
    J Bacteriol; 1967 Apr; 93(4):1346-52. PubMed ID: 6032511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EFFECT OF THIOL-BINDING REAGENTS ON THE METABOLISM OF THIOSULFATE AND TETRATHIONATE BY THIOBACILLUS NEAPOLITANUS.
    TRUDINGER PA
    J Bacteriol; 1965 Mar; 89(3):617-25. PubMed ID: 14273636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced sulfur compound oxidation by Thiobacillus caldus.
    Hallberg KB; Dopson M; Lindström EB
    J Bacteriol; 1996 Jan; 178(1):6-11. PubMed ID: 8550443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum.
    Fry B; Gest H; Hayes JM
    FEMS Microbiol Lett; 1985; 27():227-32. PubMed ID: 11540842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of oxidation of inorganic sulfur compounds by thiosulfate-grown Thiobacillus thiooxidans.
    Masau RJ; Oh JK; Suzuki I
    Can J Microbiol; 2001 Apr; 47(4):348-58. PubMed ID: 11358175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur.
    Pott AS; Dahl C
    Microbiology (Reading); 1998 Jul; 144 ( Pt 7)():1881-1894. PubMed ID: 9695921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissimilatory reduction of inorganic sulfur by facultatively anaerobic marine bacteria.
    Tuttle JH; Jannasch HW
    J Bacteriol; 1973 Sep; 115(3):732-7. PubMed ID: 4728269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatium sulfite reductase. I. Characterization of thiosulfate-forming activity at the cell extract level.
    Kobayashi K; Katsura E; Kondo T; Ishimoto M
    J Biochem; 1978 Nov; 84(5):1209-15. PubMed ID: 730752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of thiosulfate in bisulfite reduction as catalyzed by Desulfovibrio vulgaris.
    Findley JE; Akagi JM
    J Bacteriol; 1970 Sep; 103(3):741-4. PubMed ID: 5474884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assimilatory reduction of sulfate and sulfite by methanogenic bacteria.
    Daniels L; Belay N; Rajagopal BS
    Appl Environ Microbiol; 1986 Apr; 51(4):703-9. PubMed ID: 3707121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiosulfate formation and associated isotope effects during sulfite reduction by Clostridium pasteurianum.
    Chambers LA; Trudinger PA
    Can J Microbiol; 1979 Jun; 25(6):719-21. PubMed ID: 476549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution.
    Fry B; Ruf W; Gest H; Hayes JM
    Isot Geosci; 1988; 73():205-10. PubMed ID: 11538336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of reduced sulfur compounds by Beggiatoa sp.
    Nelson DC; Castenholz RW
    J Bacteriol; 1981 Jul; 147(1):140-54. PubMed ID: 7240091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved fermentative L-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli.
    Kawano Y; Onishi F; Shiroyama M; Miura M; Tanaka N; Oshiro S; Nonaka G; Nakanishi T; Ohtsu I
    Appl Microbiol Biotechnol; 2017 Sep; 101(18):6879-6889. PubMed ID: 28756590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and energetics of reduced sulfur oxidation by chemostat cultures of Thiobacillus ferrooxidans.
    Hazeu W; Bijleveld W; Grotenhuis JT; Kakes E; Kuenen JG
    Antonie Van Leeuwenhoek; 1986; 52(6):507-18. PubMed ID: 3813523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of system A and ASC transport activities to thiol-group-modifying reagents in rat liver plasma-membrane vesicles. Evidence for a direct binding of N-ethylmaleimide and iodoacetamide on A and ASC carriers.
    Pola E; Bertran J; Roca A; Palacín M; Zorzano A; Testar X
    Biochem J; 1990 Oct; 271(2):297-303. PubMed ID: 2241916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of Total Sulfur, Sulfate, Sulfite, Thiosulfate, and Sulfolipids in Plants.
    Kurmanbayeva A; Brychkova G; Bekturova A; Khozin I; Standing D; Yarmolinsky D; Sagi M
    Methods Mol Biol; 2017; 1631():253-271. PubMed ID: 28735402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens during disproportionation of thiosulfate and elemental sulfur.
    Frederiksen TM; Finster K
    Biodegradation; 2003 Jun; 14(3):189-98. PubMed ID: 12889609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pyruvate phosphoroclastic reaction in Chromatium. A probable role for ferredoxin in a photosynthetic bacterium.
    Bennett R; Fuller RC
    Biochem Biophys Res Commun; 1964 Jul; 16(4):300-7. PubMed ID: 5871813
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.