These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 5650082)
1. Microcalorimetric study of glucose permeation in microbial cells. Belaich JP; Senez JC; Murgier M J Bacteriol; 1968 May; 95(5):1750-7. PubMed ID: 5650082 [TBL] [Abstract][Full Text] [Related]
2. A Zymomonas mobilis mutant with delayed growth on high glucose concentrations. Douka E; Koukkou AI; Vartholomatos G; Frillingos S; Papamichael EM; Drainas C J Bacteriol; 1999 Aug; 181(15):4598-604. PubMed ID: 10419959 [TBL] [Abstract][Full Text] [Related]
3. INFLUENCE OF AERATION AND OF PANTOTHENATE ON GROWTH YIELDS OF ZYMOMONAS MOBILIS. BELAUICH JP; SENEZ JC J Bacteriol; 1965 May; 89(5):1195-200. PubMed ID: 14292985 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of Sugar Transport and Phosphorylation Influence Glucose and Fructose Cometabolism by Zymomonas mobilis. Parker C; Peekhaus N; Zhang X; Conway T Appl Environ Microbiol; 1997 Sep; 63(9):3519-25. PubMed ID: 16535690 [TBL] [Abstract][Full Text] [Related]
5. Strategies to determine the extent of control exerted by glucose transport on glycolytic flux in the yeast Saccharomyces bayanus. Diderich JA; Teusink B; Valkier J; Anjos J; Spencer-Martins I; van Dam K; Walsh MC Microbiology (Reading); 1999 Dec; 145 ( Pt 12)():3447-3454. PubMed ID: 10627042 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the Zymomonas mobilis glucose facilitator gene product (glf) in recombinant Escherichia coli: examination of transport mechanism, kinetics and the role of glucokinase in glucose transport. Parker C; Barnell WO; Snoep JL; Ingram LO; Conway T Mol Microbiol; 1995 Mar; 15(5):795-802. PubMed ID: 7596282 [TBL] [Abstract][Full Text] [Related]
7. D-arabinose countertransport in Bakers' yeast. Wilkins PO J Bacteriol; 1967 May; 93(5):1565-70. PubMed ID: 6025445 [TBL] [Abstract][Full Text] [Related]
8. Heterologous expression of a glycosyl hydrolase and cellular reprogramming enable Zymomonas mobilis growth on cellobiose. Kurumbang NP; Vera JM; Hebert AS; Coon JJ; Landick R PLoS One; 2020; 15(8):e0226235. PubMed ID: 32797046 [TBL] [Abstract][Full Text] [Related]
9. Unconventional bacterial association for dough leavening. Musatti A; Mapelli C; Foschino R; Picozzi C; Rollini M Int J Food Microbiol; 2016 Nov; 237():28-34. PubMed ID: 27541979 [TBL] [Abstract][Full Text] [Related]
10. Sorbose counterflow as a measure of intracellular glucose in baker's yeast. Wilkins PO; Cirillo VP J Bacteriol; 1965 Dec; 90(6):1605-10. PubMed ID: 5854586 [TBL] [Abstract][Full Text] [Related]
11. Microcalorimetric investigations of the metabolism of yeasts. VII. Flow-calorimetry of aerobic batch cultures. Brettel R; Lamprecht I; Schaarschmidt B Radiat Environ Biophys; 1980; 18(4):301-9. PubMed ID: 7012901 [TBL] [Abstract][Full Text] [Related]
12. Microcalorimetric study of the anaerobic growth of Escherichia coli: measurements of the affinity of whole cells for various energy substrates. Belaich A; Belaich JP J Bacteriol; 1976 Jan; 125(1):19-24. PubMed ID: 1373 [TBL] [Abstract][Full Text] [Related]
13. Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms. Zhang J; Lynd LR Biotechnol Bioeng; 2010 Oct; 107(2):235-44. PubMed ID: 20506488 [TBL] [Abstract][Full Text] [Related]
14. Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. Loos H; Krämer R; Sahm H; Sprenger GA J Bacteriol; 1994 Dec; 176(24):7688-93. PubMed ID: 8002594 [TBL] [Abstract][Full Text] [Related]
15. Quantitative comparison of transient growth of Saccharomyces cerevisiae, Saccharomyces kluyveri, and Kluyveromyces lactis. Herwig C; Von Stockar U Biotechnol Bioeng; 2003 Mar; 81(7):837-47. PubMed ID: 12557317 [TBL] [Abstract][Full Text] [Related]
16. Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. Diderich JA; Schepper M; van Hoek P; Luttik MA; van Dijken JP; Pronk JT; Klaassen P; Boelens HF; de Mattos MJ; van Dam K; Kruckeberg AL J Biol Chem; 1999 May; 274(22):15350-9. PubMed ID: 10336421 [TBL] [Abstract][Full Text] [Related]
17. d-Glucose Transport System of Zymomonas mobilis. Dimarco AA; Romano AH Appl Environ Microbiol; 1985 Jan; 49(1):151-7. PubMed ID: 16346694 [TBL] [Abstract][Full Text] [Related]
18. Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis. Dunn KL; Rao CV Appl Microbiol Biotechnol; 2014 Aug; 98(15):6897-905. PubMed ID: 24839214 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of growth and glucose transport in glucose-limited chemostat cultures of Saccharomyces cerevisiae CBS 8066. Postma E; Scheffers WA; van Dijken JP Yeast; 1989; 5(3):159-65. PubMed ID: 2660462 [TBL] [Abstract][Full Text] [Related]
20. Characterization of heterologous and native enzyme activity profiles in metabolically engineered Zymomonas mobilis strains during batch fermentation of glucose and xylose mixtures. Gao Q; Zhang M; McMillan JD; Kompala DS Appl Biochem Biotechnol; 2002; 98-100():341-55. PubMed ID: 12018261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]