These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 56538)

  • 21. Sprouting of active nerve terminals in partially inactive muscles of the rat.
    Betz WJ; Caldwell JH; Ribchester RR
    J Physiol; 1980 Jun; 303():281-97. PubMed ID: 7431235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A convergent model for cognitive dysfunctions in Parkinson's disease: the critical dopamine-acetylcholine synaptic balance.
    Calabresi P; Picconi B; Parnetti L; Di Filippo M
    Lancet Neurol; 2006 Nov; 5(11):974-83. PubMed ID: 17052664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 5-HT receptor regulation of neurotransmitter release.
    Fink KB; Göthert M
    Pharmacol Rev; 2007 Dec; 59(4):360-417. PubMed ID: 18160701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective blockade by scopolamine of synaptic responses in cat's caudate nucleus and its modification by lesions of the substantia nigra.
    Spehlmann R; Norcross K; Grimmer EJ
    Brain; 1978 Dec; 101(4):649-59. PubMed ID: 216458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dopaminergic and cholinergic lesions in progressive supranuclear palsy.
    Ruberg M; Javoy-Agid F; Hirsch E; Scatton B; LHeureux R; Hauw JJ; Duyckaerts C; Gray F; Morel-Maroger A; Rascol A
    Ann Neurol; 1985 Nov; 18(5):523-9. PubMed ID: 3000280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Residual striatal dopaminergic nerve terminals in very long-standing Parkinson's disease: a single photon emission computed tomography imaging study.
    Djaldetti R; Lorberboym M; Karmon Y; Treves TA; Ziv I; Melamed E
    Mov Disord; 2011 Feb; 26(2):327-30. PubMed ID: 20939078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cholinergic interneuron characteristics and nicotinic properties in the striatum.
    Zhou FM; Wilson CJ; Dani JA
    J Neurobiol; 2002 Dec; 53(4):590-605. PubMed ID: 12436423
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.
    Paul R; Choudhury A; Kumar S; Giri A; Sandhir R; Borah A
    PLoS One; 2017; 12(2):e0171285. PubMed ID: 28170429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Possible mechanisms of the involvement of dopaminergic cells and cholinergic interneurons in the striatum in the conditioned-reflex selection of motor activity.
    Sil'kis IG
    Neurosci Behav Physiol; 2006 Feb; 36(2):163-75. PubMed ID: 16380830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The fate of striatal dopaminergic neurons in Parkinson's disease and Huntington's chorea.
    Huot P; Lévesque M; Parent A
    Brain; 2007 Jan; 130(Pt 1):222-32. PubMed ID: 17142832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for a dopaminergic innervation of the pedunculopontine nucleus in monkeys, and its drastic reduction after MPTP intoxication.
    Rolland AS; Tandé D; Herrero MT; Luquin MR; Vazquez-Claverie M; Karachi C; Hirsch EC; François C
    J Neurochem; 2009 Aug; 110(4):1321-9. PubMed ID: 19527435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strength of cholinergic tone dictates the polarity of dopamine D2 receptor modulation of striatal cholinergic interneuron excitability in DYT1 dystonia.
    Scarduzio M; Zimmerman CN; Jaunarajs KL; Wang Q; Standaert DG; McMahon LL
    Exp Neurol; 2017 Sep; 295():162-175. PubMed ID: 28587876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrastructural relations between nigrostriatal dopaminergic neurons and cholinergic nerve endings in the human brain.
    Anglade P; Tsuji S; Hirsch EC; Javoy-Agid F; Agid Y
    Histol Histopathol; 1993 Jul; 8(3):501-4. PubMed ID: 8102915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains.
    Smith Y; Villalba R
    Mov Disord; 2008; 23 Suppl 3():S534-47. PubMed ID: 18781680
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Induction of axon growth in the adult brain: A new approach to restoration in Parkinson's disease.
    Padmanabhan S; Burke RE
    Mov Disord; 2018 Jan; 33(1):62-70. PubMed ID: 29205486
    [No Abstract]   [Full Text] [Related]  

  • 36. Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease.
    Sulzer D
    Trends Neurosci; 2007 May; 30(5):244-50. PubMed ID: 17418429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new outlook on cholinergic interneurons in Parkinson's disease and L-DOPA-induced dyskinesia.
    Conti MM; Chambers N; Bishop C
    Neurosci Biobehav Rev; 2018 Sep; 92():67-82. PubMed ID: 29782883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of acetylcholine release by cholecystokinin in striatum: receptor specificity; role of dopaminergic neuronal activity.
    Petkova-Kirova P; Giovannini MG; Kalfin R; Rakovska A
    Brain Res Bull; 2012 Dec; 89(5-6):177-84. PubMed ID: 22981453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degenerative ultrastructural changes observed in the neuropil of caudate nuclei from Parkinson's disease patients.
    Machado-Salas J; Ibarra O; Martinez Fong D; Cornejo A; Aceves J; Kuri J
    Stereotact Funct Neurosurg; 1990; 54-55():297-305. PubMed ID: 2080345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Are Dopamine Oxidation Metabolites Involved in the Loss of Dopaminergic Neurons in the Nigrostriatal System in Parkinson's Disease?
    Herrera A; Muñoz P; Steinbusch HWM; Segura-Aguilar J
    ACS Chem Neurosci; 2017 Apr; 8(4):702-711. PubMed ID: 28233992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.