These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 56538)

  • 41. [A possible mechanism of participation of dopaminergic cells and striatal cholinergic interneurons in the conditioned selection of motor activity].
    Sil'kis IG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2004; 54(6):734-49. PubMed ID: 15658038
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Medicamentous strategy for improving the quality of life in the senescence].
    Knoll J
    Wien Med Wochenschr Suppl; 1986; 98():1-18. PubMed ID: 3097965
    [TBL] [Abstract][Full Text] [Related]  

  • 43. New developments in the pathology of Parkinson's disease.
    Jellinger K
    Adv Neurol; 1990; 53():1-16. PubMed ID: 1978509
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Revisiting dopamine-acetylcholine imbalance in Parkinson's disease: Glutamate co-transmission as an exciting partner in crime.
    Zhang YF; Cragg SJ
    Neuron; 2021 Apr; 109(7):1070-1071. PubMed ID: 33831360
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regenerative effects of peptide nanofibers in an experimental model of Parkinson's disease.
    Sever M; Turkyilmaz M; Sevinc C; Cakir A; Ocalan B; Cansev M; Guler MO; Tekinay AB
    Acta Biomater; 2016 Dec; 46():79-90. PubMed ID: 27619838
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Temporal-Spatial Profiling of Pedunculopontine Galanin-Cholinergic Neurons in the Lactacystin Rat Model of Parkinson's Disease.
    Elson JL; Kochaj R; Reynolds R; Pienaar IS
    Neurotox Res; 2018 Jul; 34(1):16-31. PubMed ID: 29218504
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Time-course of nigrostriatal neurodegeneration and neuroinflammation in the 6-hydroxydopamine-induced axonal and terminal lesion models of Parkinson's disease in the rat.
    Walsh S; Finn DP; Dowd E
    Neuroscience; 2011 Feb; 175():251-61. PubMed ID: 21145947
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Robust regeneration of CNS axons through a track depleted of CNS glia.
    Moon LD; Brecknell JE; Franklin RJ; Dunnett SB; Fawcett JW
    Exp Neurol; 2000 Jan; 161(1):49-66. PubMed ID: 10683273
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preservation of hypothalamic dopaminergic neurons in Parkinson's disease.
    Matzuk MM; Saper CB
    Ann Neurol; 1985 Nov; 18(5):552-5. PubMed ID: 4073850
    [TBL] [Abstract][Full Text] [Related]  

  • 50. D-1 receptor-linked mechanism modulates cholinergic neurotransmission in rat striatum.
    Consolo S; Wu CF; Fusi R
    J Pharmacol Exp Ther; 1987 Jul; 242(1):300-5. PubMed ID: 2886638
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction between motor axons from two different nerves reinnervating the pectoral muscle of Xenopus laevis.
    Haimann C; Mallart A; Ferré JT; Zilber-Gachelin NF
    J Physiol; 1981 Jan; 310():257-72. PubMed ID: 6262504
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sequential administration of GDNF into the substantia nigra and striatum promotes dopamine neuron survival and axonal sprouting but not striatal reinnervation or functional recovery in the partial 6-OHDA lesion model.
    Rosenblad C; Kirik D; Björklund A
    Exp Neurol; 2000 Feb; 161(2):503-16. PubMed ID: 10686072
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thalamic cholinergic innervation makes a specific bottom-up contribution to signal detection: Evidence from Parkinson's disease patients with defined cholinergic losses.
    Kim K; Müller MLTM; Bohnen NI; Sarter M; Lustig C
    Neuroimage; 2017 Apr; 149():295-304. PubMed ID: 28167350
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Immunoaffinity purification of cholinergic nerve terminals.
    Richardson PJ; James S
    Biochem Soc Trans; 1991 Feb; 19(1):83-7. PubMed ID: 1828050
    [No Abstract]   [Full Text] [Related]  

  • 55. Where Dopaminergic and Cholinergic Systems Interact: A Gateway for Tuning Neurodegenerative Disorders.
    Amalric M; Pattij T; Sotiropoulos I; Silva JM; Sousa N; Ztaou S; Chiamulera C; Wahlberg LU; Emerich DF; Paolone G
    Front Behav Neurosci; 2021; 15():661973. PubMed ID: 34366802
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Clinical progression in Parkinson disease and the neurobiology of axons.
    Cheng HC; Ulane CM; Burke RE
    Ann Neurol; 2010 Jun; 67(6):715-25. PubMed ID: 20517933
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neuromelanin: a key to Parkinson's disease.
    Prota G; d'Ischia M
    Pigment Cell Res; 1993 Oct; 6(5):333-5. PubMed ID: 8302771
    [No Abstract]   [Full Text] [Related]  

  • 58. Inhibitory effect of dopamine on acetylcholine release from caudate nucleus.
    Vizi SE; Rónai A; Hársing L; Knoll J
    Pol J Pharmacol Pharm; 1977; 29(3):201-11. PubMed ID: 887499
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The PM20D1-NADA pathway protects against Parkinson's disease.
    Yang Y; Chen S; Zhang L; Zhang G; Liu Y; Li Y; Zou L; Meng L; Tian Y; Dai L; Xiong M; Pan L; Xiong J; Chen L; Hou H; Yu Z; Zhang Z
    Cell Death Differ; 2024 Aug; ():. PubMed ID: 39174646
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unraveling Dysregulated Cell Signaling Pathways, Genetic and Epigenetic Mysteries of Parkinson's Disease.
    Hamidpour SK; Amiri M; Ketabforoush AHME; Saeedi S; Angaji A; Tavakol S
    Mol Neurobiol; 2024 Apr; ():. PubMed ID: 38573414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.