These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 5655439)

  • 1. Nucleotide content, calcium accumulation, and phosphate metabolism in subcellular fractions of rat brain.
    Abood LG; Kurahasi K; Gruner E; Perez del Cerro M
    Biochim Biophys Acta; 1968 Apr; 153(3):531-44. PubMed ID: 5655439
    [No Abstract]   [Full Text] [Related]  

  • 2. Calcium accumulation by isolated nerve ending particles from brain. II. Factors influencing calcium movements.
    Lust WD; Robinson JD
    J Neurobiol; 1969; 1(3):317-28. PubMed ID: 4334650
    [No Abstract]   [Full Text] [Related]  

  • 3. Calcium accumulation by isolated nerve ending particles from brain. I. The site of energy-dependent accumulation.
    Lust WD; Robinson JD
    J Neurobiol; 1969; 1(3):303-16. PubMed ID: 4334649
    [No Abstract]   [Full Text] [Related]  

  • 4. Adenosine triphosphate dependent calcium binding of microsomes and nerve endings.
    Yoshida H; Kadota K; Fujisawa H
    Nature; 1966 Oct; 212(5059):291-2. PubMed ID: 5970125
    [No Abstract]   [Full Text] [Related]  

  • 5. The subcellular distribution and nucleotide specificities of Na+, K+-stimulated adenosine triphosphatase and [14C]adenosine diphosphate-adenosine triphosphate exchange reactions in rat brain.
    Stahl WL
    J Neurochem; 1968 Jun; 15(6):499-509. PubMed ID: 4233288
    [No Abstract]   [Full Text] [Related]  

  • 6. Protein synthesis in isolated rat brain mitochondria and nerve endings.
    Goldberg MA
    Brain Res; 1971 Apr; 27(2):319-28. PubMed ID: 4994679
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies on (32P) orthohosphate incorporation into nucleotides, phospholipids and phosphoproteins of isolated nerve endings from developing rat brain.
    Abdel-Latif AA; Yamaguchi T; Yamaguchi M; Chang F
    Brain Res; 1968 Sep; 10(3):307-21. PubMed ID: 5687301
    [No Abstract]   [Full Text] [Related]  

  • 8. A specific ADP requirement in he course of Ca++ and phosphate accumulation in mitochondria.
    Leblanc P; Bourdain M; Clauser H
    Biochem Biophys Res Commun; 1970 Aug; 40(3):754-62. PubMed ID: 5492168
    [No Abstract]   [Full Text] [Related]  

  • 9. Subcellular localization of (14C)adenine derivatives newly-formed in cerebral tissues and the effects of electrical excitation.
    Kuroda Y; McIlwain H
    J Neurochem; 1973 Oct; 21(4):889-900. PubMed ID: 4356839
    [No Abstract]   [Full Text] [Related]  

  • 10. ATP formation from ADP and a phosphorylated intermediate of Ca2+-dependent ATPase in fragmented sarcoplasmic reticulum.
    Kanazawa T; Yamada S; Tonomura Y
    J Biochem; 1970 Oct; 68(4):593-5. PubMed ID: 4249833
    [No Abstract]   [Full Text] [Related]  

  • 11. Adenosinediphosphate metabolism in brain microsomes: structural organization and enzymic activity.
    Robinson JD
    J Neurochem; 1967 Dec; 14(12):1143-54. PubMed ID: 4229675
    [No Abstract]   [Full Text] [Related]  

  • 12. Evidence for protein synthesis in synaptosomal membranes.
    Gilbert JM
    J Biol Chem; 1972 Oct; 247(20):6541-50. PubMed ID: 5076769
    [No Abstract]   [Full Text] [Related]  

  • 13. Adenine nucleotide metabolism of blood platelets. VI. Subcellular localization of nucleotide pools with different functions in the platelet release reaction.
    Holmsen H; Day HJ; Storm E
    Biochim Biophys Acta; 1969 Aug; 186(2):254-66. PubMed ID: 4980809
    [No Abstract]   [Full Text] [Related]  

  • 14. RNA metabolism in subcellular fractions of brain tissue.
    Balázs R; Cocks WA
    J Neurochem; 1967 Nov; 14(11):1035-55. PubMed ID: 4862361
    [No Abstract]   [Full Text] [Related]  

  • 15. Early effects of phenobarbital on the adenine nucleotide pool of rat liver.
    McCauley R; O'Neill J; Couri D
    Biochem Pharmacol; 1972 Jul; 21(14):1929-34. PubMed ID: 4649343
    [No Abstract]   [Full Text] [Related]  

  • 16. Interaction of norepinephrine with subcellular fractions of rat brain. I. Characteristics of norepinephrine uptake.
    Herblin WF; O'Brien RD
    Brain Res; 1968 May; 8(2):298-309. PubMed ID: 5652722
    [No Abstract]   [Full Text] [Related]  

  • 17. The function of ATP in Ca2+ uptake by rat brain mitochondria.
    Tjioe S; Bianchi CP; Haugaard N
    Biochim Biophys Acta; 1970 Sep; 216(2):270-3. PubMed ID: 5504627
    [No Abstract]   [Full Text] [Related]  

  • 18. Biochemical studies on isolated nerve endings and other particulates of bullfrog brain.
    Abood LG; Kurahasi K; Perez del Cerro M
    Biochim Biophys Acta; 1967 Apr; 136(3):521-32. PubMed ID: 6057656
    [No Abstract]   [Full Text] [Related]  

  • 19. Rapid loss of labeled DNA from rat brain due to radiation damage.
    Merits I; Cain J
    Biochim Biophys Acta; 1969 Jan; 174(1):315-21. PubMed ID: 5766299
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of sodium ions on calcium movements in isolated synaptic terminals.
    Blaustein MP; Wiesmann WP
    Proc Natl Acad Sci U S A; 1970 Jul; 66(3):664-71. PubMed ID: 5269232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.