These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 565725)

  • 1. Membrane lipid composition: a determinant of anaerobic growth and petite formation in psychrophilic and psychrophobic yeasts [proceedings].
    Watson K; Morton H; Arthur H; Streamer M
    Biochem Soc Trans; 1978; 6(2):380-1. PubMed ID: 565725
    [No Abstract]   [Full Text] [Related]  

  • 2. Anaerobic growth and formation of respiration-deficient mutants of various species of yeasts.
    Subík J; Kolarov J; Kovác L
    FEBS Lett; 1974 Sep; 45(1):263-6. PubMed ID: 4471996
    [No Abstract]   [Full Text] [Related]  

  • 3. Lipid composition of mesophilic and psychrophilic yeasts (Candida species) as influenced by environmental temperature.
    KATES M; BAXTER RM
    Can J Biochem Physiol; 1962 Sep; 40():1213-27. PubMed ID: 14454237
    [No Abstract]   [Full Text] [Related]  

  • 4. Thermal adaptation in yeasts: correlation of substrate transport with membrane lipid composition in psychrophilic and thermotolerant yeasts [proceedings].
    Watson K
    Biochem Soc Trans; 1978; 6(1):293-6. PubMed ID: 640197
    [No Abstract]   [Full Text] [Related]  

  • 5. [Influence of aerobic and anaerobic conditions on the chemical composition and enzyme activity of the buds of mother cells of Candida utilis IBFM-405 yeasts].
    Orlova VS; Vinogradov BD; Rylkin SS; Berezov TT
    Prikl Biokhim Mikrobiol; 1977; 13(2):260-4. PubMed ID: 559305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural differentiation of obligately aerobic and facultatively anaerobic yeasts.
    McClary DO; Bowers WD
    J Cell Biol; 1967 Feb; 32(2):519-24. PubMed ID: 10976236
    [No Abstract]   [Full Text] [Related]  

  • 7. Temperature induced changes in microsomal (Na+,K+)-ATPase and lipid composition of Candida kefyr.
    Singh B; Sarabjit K; Randhawa S; Sharma C; Gupta S
    Acta Microbiol Hung; 1991; 38(2):133-40. PubMed ID: 1666728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Role of the energy status of Escherichia coli in cell membrane phospholipid composition changes during aerobic-anaerobic transitions].
    Tkachenko AG; Rozenblat GF; Chudinov AA; Sherstneva VV; Raev MB; Eremin VA
    Prikl Biokhim Mikrobiol; 1991; 27(4):558-64. PubMed ID: 1745649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Petite mutants of sophorolipid-producing Candida yeasts.
    Hommel RK; Baum A; Kleber HP
    J Basic Microbiol; 1994; 34(1):57-9. PubMed ID: 8207665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Metabolic characteristics of thermophilic microorganisms].
    Pozmogova IN
    Mikrobiologiia; 1975; 44(3):492-7. PubMed ID: 808692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal adaptation in yeast: obligate psychrophiles are obligate aerobes, and obligate thermophiles are facultative anaerobes.
    Watson K; Arthur H; Morton H
    J Bacteriol; 1978 Nov; 136(2):815-7. PubMed ID: 568620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ability for anaerobic growth is not sufficient for development of the petite phenotype in Saccharomyces kluyveri.
    Møller K; Olsson L; Piskur J
    J Bacteriol; 2001 Apr; 183(8):2485-9. PubMed ID: 11274107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Change in the intensity of NAD-H 2 fluorescence in Candida guilliermondii yeasts during transition from anaerobic to aerobic states].
    Maneshin SK; Arevshatian AA
    Prikl Biokhim Mikrobiol; 1972; 8(3):323-6. PubMed ID: 4347836
    [No Abstract]   [Full Text] [Related]  

  • 14. [Lipids and lipases of various yeasts].
    Zviagintseva IS; Pitriuk IA
    Mikrobiologiia; 1976; 45():470-4. PubMed ID: 1004248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Torulopsis bacarum, Torulopsis pustula and Torulopsis multis-gemmis sp. nov., three new yeasts from soft fruit.
    Buhagiar RW
    J Gen Microbiol; 1975 Jan; 86(1):1-11. PubMed ID: 1089748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of growth temperature on the membrane lipid environment of the psychrophilic bacterium Micrococcus cryophilus.
    Foot M; Jeffcoat R; Barratt MD; Russell NJ
    Arch Biochem Biophys; 1983 Jul; 224(2):718-27. PubMed ID: 6307159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different modes of ozone-induced lipid oxidation in Candida utilis yeast cells and isolated membrane preparations.
    Matus VK; Martynova MA; Skorynko EV; Melnikova AM; Konev SV
    Membr Cell Biol; 1999; 13(1):59-67. PubMed ID: 10661470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High membrane fluidity is related to NaCl stress in Candida membranefaciens.
    Khaware RK; Koul A; Prasad R
    Biochem Mol Biol Int; 1995 Apr; 35(4):875-80. PubMed ID: 7627136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethidium bromide mutagenesis in yeast: protection by anaerobiosis.
    Pinto M; Guerineau M; Paoletti C
    Mutat Res; 1975 Nov; 30(2):219-28. PubMed ID: 1107832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Candida krusei produces ethanol without production of succinic acid; a potential advantage for ethanol recovery by pervaporation membrane separation.
    Nakayama S; Morita T; Negishi H; Ikegami T; Sakaki K; Kitamoto D
    FEMS Yeast Res; 2008 Aug; 8(5):706-14. PubMed ID: 18399986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.