These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 5657910)

  • 1. Electrical and hydrodynamical properties of polypeptides in solution. I. Poly(L-glutamic acid) in methanol-water mixtures.
    Matsumoto M; Watanabe H; Yoshioka K
    Biopolymers; 1968; 6(7):929-38. PubMed ID: 5657910
    [No Abstract]   [Full Text] [Related]  

  • 2. Electric and hydrodynamic properties of polypeptides in solution. 3. Aggregation of poly(L-glutamic acid) in aqueous methanol solvents studied by electric birefringence.
    Matsumoto M; Watanabe H; Yoshioka K
    Biopolymers; 1972; 11(8):1711-22. PubMed ID: 5056089
    [No Abstract]   [Full Text] [Related]  

  • 3. Electric and hydrodynamic properties of polypeptides in solution. IV. A new conformational change of poly(L-glutamic acid) in dimethylsulfoxide-methanol mixtures.
    Matsumoto M; Watanabe H; Yoshioka K
    Biopolymers; 1973; 12(8):1729-39. PubMed ID: 4733705
    [No Abstract]   [Full Text] [Related]  

  • 4. Electric and hydrodynamic properties of polypeptides in solution. II. Conformation of poly(L-glutamic acid) in various organic solvents.
    Matsumoto M; Watanabe H; Yoshioka K
    Biopolymers; 1970 Nov; 9(11):1307-17. PubMed ID: 5486507
    [No Abstract]   [Full Text] [Related]  

  • 5. The helix-coil transition of poly-L-lysine in methanol-water solvent mixtures.
    Epand RF; Scheraga HA
    Biopolymers; 1968; 6(9):1383-6. PubMed ID: 5669473
    [No Abstract]   [Full Text] [Related]  

  • 6. Electric birefringence of poly-L-lysine hydrobromide in methanol-water mixtures and helix-coil transition induced by high electric fields.
    Kikuchi K; Yoshioka K
    Biopolymers; 1973 Dec; 12(12):2667-79. PubMed ID: 4782546
    [No Abstract]   [Full Text] [Related]  

  • 7. Enthalpy change of the coil-helix transition of poly(gamma-benzyl L-glutamate) in dichloroacetic acid-1,2-dichloroethane mixtures.
    Kagemotto A; Fujishiro R
    Biopolymers; 1968; 6(12):1753-8. PubMed ID: 5704344
    [No Abstract]   [Full Text] [Related]  

  • 8. Proton magnetic resonance and optical spectroscopic studies of watr-soluble polypeptides: poly-L-lysine HBr, poly(L-glutamic acid), and copoly(L-glutamic acid42, L-lysine HBr28, L-alanine).
    Bradbury EM; Crane-Robinson C; Goldman H; Rattle HW
    Biopolymers; 1968 Jun; 6(6):851-62. PubMed ID: 5654616
    [No Abstract]   [Full Text] [Related]  

  • 9. Solution properties of synthetic polypeptides. VI. Helix-coil transition of poly-N5-(3-hydroxypropyl)-L-glutamine.
    Okita K; Teramoto A; Fujita H
    Biopolymers; 1970; 9(6):717-38. PubMed ID: 5444131
    [No Abstract]   [Full Text] [Related]  

  • 10. Kinetic properties and the electric field effect of the helix-coil transition of poly(gamma-benzyl L-glutamate) determined from dielectric relaxation measurements.
    Schwarz G; Seelig J
    Biopolymers; 1968; 6(9):1263-77. PubMed ID: 5669466
    [No Abstract]   [Full Text] [Related]  

  • 11. Electrophoretic behavior of poly-L-glutamic acid and poly-L-lysine.
    Prokopová E; Ciferri A
    Biopolymers; 1972; 11(8):1621-6. PubMed ID: 5056086
    [No Abstract]   [Full Text] [Related]  

  • 12. Block sequential polypeptides of L-alanine and glycine with D, L-glutamic acid.
    Iio T
    Biopolymers; 1971; 10(9):1583-96. PubMed ID: 5126128
    [No Abstract]   [Full Text] [Related]  

  • 13. Interaction of poly- ,L-glutamic acid with acridine orange.
    Hatano M; Yoneyama M; Sato Y
    Biopolymers; 1973 Apr; 12(4):895-903. PubMed ID: 4695683
    [No Abstract]   [Full Text] [Related]  

  • 14. Potentiometric titrations and the helix-coil transition of poly(L-glutamic acid) and poly-L-lysine in aqueous salt solutions.
    Ciferri A; Puett D; Rajagh L; Hermans J
    Biopolymers; 1968; 6(8):119-36. PubMed ID: 5663413
    [No Abstract]   [Full Text] [Related]  

  • 15. The effects of solvent environment on the optical rotatory dispersion parameters of polypeptides. II. Studies on poly-L-glutamic acid.
    Cassim JY; Taylor EW
    Biophys J; 1965 Jul; 5(4):573-89. PubMed ID: 5861707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudo-phase diagrams of poly-L-lysine and poly(L-glutamic acid) in aqueous salt solutions.
    Puett D; Ciferri A
    Biopolymers; 1968; 6(8):1213-7. PubMed ID: 5663415
    [No Abstract]   [Full Text] [Related]  

  • 17. [Poly(alpha-L-glutamic acid) in aqueous solution. Specific aggregation and hysteresis effects. II. Aggregation and precipitation. Chromatographic analysis].
    Spach G; Constantin D
    Biopolymers; 1968; 6(5):653-8. PubMed ID: 5654965
    [No Abstract]   [Full Text] [Related]  

  • 18. Potentiometric and circular dichroic measurements of poly(L-glutamic acid) in aqueous solutions of organic and inorganic electrolytes at ambient temperature.
    Steigman J; Cosani A
    Biopolymers; 1971; 10(2):357-77. PubMed ID: 5545529
    [No Abstract]   [Full Text] [Related]  

  • 19. Letter: Viscosity/molecular-weight relationship of poly(alpha-L-glutamic acid) in water and in water/dioxane mixtures.
    Morcellet M; Loucheux C
    Biopolymers; 1976 Sep; 15(9):1857-62. PubMed ID: 963266
    [No Abstract]   [Full Text] [Related]  

  • 20. Polypeptides with known repeating sequences of amino acids. Comparison of several methods used for the synthesis of poly-gamma-D- and L-glutamylglycine and investigation of its serological reaction with antianthrax immune serum.
    Kovacs J; Schmit GN; Ghatak UR
    Biopolymers; 1968 Jun; 6(6):817-36. PubMed ID: 5654615
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.