These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 565804)

  • 1. Carbamylation and decarbamylation of acetylcholinesterase: effect of choline, 3,3-dimethyl-1-butanol and some allosteric effectors.
    Dawson RM
    J Neurochem; 1978 Apr; 30(4):865-70. PubMed ID: 565804
    [No Abstract]   [Full Text] [Related]  

  • 2. Rate constants of carbamylation and decarbamylation of acetylcholinesterase for physostigmine and carbaryl in the presence of an oxime.
    Dawson RM
    Neurochem Int; 1994 Feb; 24(2):173-82. PubMed ID: 8161944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of choline esters on the decarbamylation of dimethylcarbamyl-acetylcholinesterase.
    Sok DE; Kim YB; Cha SH; Chung YS
    Neurochem Int; 1992 Feb; 20(2):201-5. PubMed ID: 1304859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ligands on a discontinuous temperature dependence of the decarbamylation reaction of erythrocyte acetylcholinesterase.
    Roufogalis BD; Quist EE; Wickson VM
    Biochim Biophys Acta; 1973 Oct; 321(2):536-45. PubMed ID: 4796958
    [No Abstract]   [Full Text] [Related]  

  • 5. Oxime effects on the rate constants of carbamylation and decarbamylation of acetylcholinesterase for pyridostigmine, physostigmine and insecticidal carbamates.
    Dawson RM
    Neurochem Int; 1995 Jun; 26(6):643-54. PubMed ID: 7670367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of the kinetic properties of Triton-solubilized rabbit brain acetylcholinesterase by allosteric effectors at low ionic strength.
    Dawson RM; Gray PJ; Upsher CM; Michaelson S
    Neurochem Int; 1989; 15(1):49-54. PubMed ID: 20504464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction of carbamates with acetylcholinesterase.
    Watts P; Wilkinson RG
    Biochem Pharmacol; 1977 Apr; 26(8):757-61. PubMed ID: 558761
    [No Abstract]   [Full Text] [Related]  

  • 8. The electrostatic contribution to binding in the choline transport system of erythrocytes.
    Krupka RM; Devés R
    J Biol Chem; 1980 Sep; 255(18):8546-9. PubMed ID: 7410375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reaction of choline and 3,3-dimethyl-1-butanol with the acetylenzyme from acetylcholinesterase.
    Dawson RM
    J Neurochem; 1975 Dec; 25(6):783-7. PubMed ID: 1471
    [No Abstract]   [Full Text] [Related]  

  • 10. [Effect of chlorcholin chloride and N,N-dimethyl-(2-bromethyl)-hydrazinium bromide on the activity of cholinesterases in the erythrocytes and plasma of rat and man].
    Henninghausen G; Tiefenbach B; Karnstedt U; Kröning G
    Acta Biol Med Ger; 1973; 31(6):873-8. PubMed ID: 4791181
    [No Abstract]   [Full Text] [Related]  

  • 11. Biochemical and pharmacological properties of acryloylcholine, an inhibitor of choline acetyltransferase.
    Malthe-Sorenssen D; Andersen RA; Fonnum F
    Biochem Pharmacol; 1974 Feb; 23(3):577-86. PubMed ID: 4822743
    [No Abstract]   [Full Text] [Related]  

  • 12. [Interaction of membrane-bound and solubilized erythrocyte acetylcholinesterase with carbamates].
    Kugusheva LI; Rozengart VI; Sherstobitov OE
    Ukr Biokhim Zh (1978); 1990; 62(1):34-9. PubMed ID: 2336723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of cholinesterase by carbamates. A new kinetic approach.
    Post LC
    Biochim Biophys Acta; 1971 Oct; 250(1):121-30. PubMed ID: 5141670
    [No Abstract]   [Full Text] [Related]  

  • 14. Molecular aspects of the interaction of lactoyl- and glyceroylcholines with acetylcholinesterase.
    Sastry BV; White EC
    Biochim Biophys Acta; 1968 Mar; 151(3):597-606. PubMed ID: 5689551
    [No Abstract]   [Full Text] [Related]  

  • 15. Identical kinetics of human erythrocyte and muscle acetylcholinesterase with respect to carbamate pre-treatment, residual activity upon soman challenge and spontaneous reactivation after withdrawal of the inhibitors.
    Herkert NM; Eckert S; Eyer P; Bumm R; Weber G; Thiermann H; Worek F
    Toxicology; 2008 Apr; 246(2-3):188-92. PubMed ID: 18304715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The effect of choline on the rate of hydrolysis of acetylcholine with acetylcholinesterase of bovine erythrocytes].
    Brestkin AP; Ivanova LA; Svechnikova VV
    Biokhimiia; 1966; 31(2):416-23. PubMed ID: 5999936
    [No Abstract]   [Full Text] [Related]  

  • 17. In vitro kinetic interactions of pyridostigmine, physostigmine and soman with erythrocyte and muscle acetylcholinesterase from different species.
    Herkert NM; Thiermann H; Worek F
    Toxicol Lett; 2011 Sep; 206(1):41-6. PubMed ID: 21414391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new method to characterize the kinetics of cholinesterases inhibited by carbamates.
    Xiao Q; Zhou H; Wei H; Du H; Tan W; Zhan Y; Pistolozzi M
    J Pharm Biomed Anal; 2017 Sep; 144():175-182. PubMed ID: 28483282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of temperature and cholinergic ligands on the carbamylation of unmodified and carbodiimide-modified erythrocyte acetylcholinesterase.
    Roufogalis BD; Wickson VM
    FEBS Lett; 1974 Feb; 39(1):118-22. PubMed ID: 4859363
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of charge on the carbamylation and binding constants of eel acetylcholinesterase in reaction with neostigmine and related carbamates.
    Iverson F; Main AR
    Biochemistry; 1969 May; 8(5):1889-95. PubMed ID: 5785211
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.