These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 5660367)

  • 1. [The SO4= transport system of Chlorella pyrenoidosa and its regulation. I. Kinetic study of permeation].
    Vallée M; Jeanjean R
    Biochim Biophys Acta; 1968 Jun; 150(4):599-606. PubMed ID: 5660367
    [No Abstract]   [Full Text] [Related]  

  • 2. [The sulfate transport system of Chlorella pyrenoidosa and its regulation. IV. Studies with chromate ion].
    Vallée M
    Biochim Biophys Acta; 1969 Apr; 173(3):486-500. PubMed ID: 5769641
    [No Abstract]   [Full Text] [Related]  

  • 3. [The S04= transport system of Chlorella pyrenoidosa and its regulation. Research on the regulation of entry].
    Vallée M; Jeanjean R
    Biochim Biophys Acta; 1968 Jun; 150(4):607-17. PubMed ID: 5660368
    [No Abstract]   [Full Text] [Related]  

  • 4. Genetic and accumulation studies in sulfite-requiring mutants of Aspergillus nidulans.
    Gravel RA; Käfer E
    Can J Genet Cytol; 1970 Dec; 12(4):831-40. PubMed ID: 4934393
    [No Abstract]   [Full Text] [Related]  

  • 5. Sulphur and phosphorus requirements of Curvularia pallescens Boed.
    Bais BS; Singh SB; Singh DR; Singh DV
    Mycopathol Mycol Appl; 1972 Sep; 47(4):363-8. PubMed ID: 4672786
    [No Abstract]   [Full Text] [Related]  

  • 6. Assimilatory reduction of sulfate and sulfite by methanogenic bacteria.
    Daniels L; Belay N; Rajagopal BS
    Appl Environ Microbiol; 1986 Apr; 51(4):703-9. PubMed ID: 3707121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical characterization of sulfur assimilation by Salmonella pullorum.
    Kline BC; Schoenhard DE
    J Bacteriol; 1970 Apr; 102(1):142-8. PubMed ID: 4908669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RELATIONSHIP OF SULPHUR METABOLISM AND DIVISION OF CHLORELLA PYRENOIDOSA.
    VRANA D; FENCL Z
    Folia Microbiol (Praha); 1964 May; 14():156-63. PubMed ID: 14181468
    [No Abstract]   [Full Text] [Related]  

  • 9. Transport of sulphate, thiosulphate and iodide by choroid plexus in vitro.
    Robinson RJ; Cutler RW; Lorenzo AV; Barlow CF
    J Neurochem; 1968 Oct; 15(10):1169-79. PubMed ID: 5711129
    [No Abstract]   [Full Text] [Related]  

  • 10. Specificity of transport processes for sulfur, selenium, and molybdenum anions by filamentous fungi.
    Tweedie JW; Segel IH
    Biochim Biophys Acta; 1970 Jan; 196(1):95-106. PubMed ID: 5412251
    [No Abstract]   [Full Text] [Related]  

  • 11. THE EFFECT OF UNCOUPLING AGENTS ON CARBON DIOXIDE FIXATION BY A THIOBACILLUS.
    KELLY DP; SYRETT PJ
    J Gen Microbiol; 1964 Feb; 34():307-17. PubMed ID: 14135537
    [No Abstract]   [Full Text] [Related]  

  • 12. The specific interaction of chromate with the dual sulfate permease systems of Neurospora crassa.
    Roberts KR; Marzluf GA
    Arch Biochem Biophys; 1971 Feb; 142(2):651-9. PubMed ID: 5550165
    [No Abstract]   [Full Text] [Related]  

  • 13. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum.
    Fry B; Gest H; Hayes JM
    FEMS Microbiol Lett; 1985; 27():227-32. PubMed ID: 11540842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. INTRACELLULAR DISTRIBUTION OF SULFUR DURING THE SYNCHRONOUS GROWTH OF CHLORELLA PYRENOIDOSA.
    JOHNSON RA; SCHMIDT RR
    Biochim Biophys Acta; 1963 Aug; 74():428-37. PubMed ID: 14071587
    [No Abstract]   [Full Text] [Related]  

  • 15. Products of sulphide oxidation in extracts of Thiobacillus concretivorus.
    Moriarty DJ; Nicholas DJ
    Biochim Biophys Acta; 1970 Mar; 197(2):143-51. PubMed ID: 5416105
    [No Abstract]   [Full Text] [Related]  

  • 16. Sulphate production by Paracoccus pantotrophus ATCC 35512 from different sulphur substrates: sodium thiosulphate, sulphite and sulphide.
    Meyer DD; Andrino FG; Possedente de Lira S; Fornaro A; Corção G; Brandelli A
    Environ Technol; 2016; 37(6):768-73. PubMed ID: 26269005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Keratin decomposition by dermatophytes. I. Sulfite production as a possible way of substrate denaturation.
    Kunert J
    Z Allg Mikrobiol; 1973; 13(6):489-98. PubMed ID: 4748158
    [No Abstract]   [Full Text] [Related]  

  • 18. Uptake and efflux of sulfate in Neurospora crassa.
    Marzluf GA
    Biochim Biophys Acta; 1974 Mar; 339(3):374-81. PubMed ID: 4276129
    [No Abstract]   [Full Text] [Related]  

  • 19. Isolation of sulphate transport defective mutants of Candida utilis: further evidence for a common transport system for sulphate, sulphite and thiosulphate.
    García M; Benítez J; Delgado J; Kotyk A
    Folia Microbiol (Praha); 1983; 28(1):1-5. PubMed ID: 6682073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of the membrane potential and evidence for active transport of ions in Chlorella pyrenoidosa.
    Barber J
    Biochim Biophys Acta; 1968 Jun; 150(4):618-25. PubMed ID: 5660369
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.