BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 5660920)

  • 1. Effects of varying boron-10 dose, thermal neutron fluence and reactor employed on results of neutron capture therapy of a transplantable mouse neoplasm.
    Farr LE; Konikowski T
    Int J Appl Radiat Isot; 1968 May; 19(5):459-70. PubMed ID: 5660920
    [No Abstract]   [Full Text] [Related]  

  • 2. Long range effects of neutron capture therapy of cancer in mice--II. Dose effect.
    Farr LE; Konikowski T
    Int J Nucl Med Biol; 1978 Mar; 5(1):3-10. PubMed ID: 659058
    [No Abstract]   [Full Text] [Related]  

  • 3. Investigation of neutron beams for the realization of boron neutron capture therapy.
    Csom G; Zsolnay EM; Szondi EJ
    Basic Life Sci; 1990; 54():141-51. PubMed ID: 2268235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomedical irradiation system for boron neutron capture therapy at the Kyoto University Reactor.
    Kobayashi T; Kanda K; Ujeno Y; Ishida MR
    Basic Life Sci; 1990; 54():321-39. PubMed ID: 2176458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gadolinium as a neutron capture therapy agent.
    Shih JL; Brugger RM
    Med Phys; 1992; 19(3):733-44. PubMed ID: 1508113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of boronated tetracycline antibiotic derivatives (T 2 B 2 ) as the boron-10 carrier in neutron capture therapy.
    Gillchriest WC; Shaw DH
    Oncology; 1973; 27(2):97-104. PubMed ID: 4701584
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of neutron capture irradiation upon malignant brain tumors in mice.
    Entzian W; Soloway AH; Raju R; Sweet WH; Brownell GL
    Acta Radiol Ther Phys Biol; 1966; 5():95-100. PubMed ID: 6005657
    [No Abstract]   [Full Text] [Related]  

  • 8. [Accumulation of carborane-series compounds in animal tissues during neutron-capture therapy].
    Spryshkova RA; Brattsev VA; Sherman TL; Stanko VI
    Med Radiol (Mosk); 1981 Jul; 26(7):51-5. PubMed ID: 7289807
    [No Abstract]   [Full Text] [Related]  

  • 9. Boron neutron capture therapy (BNCT): implications of neutron beam and boron compound characteristics.
    Wheeler FJ; Nigg DW; Capala J; Watkins PR; Vroegindeweij C; Auterinen I; Seppälä T; Bleuel D
    Med Phys; 1999 Jul; 26(7):1237-44. PubMed ID: 10435523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress towards boron neutron capture therapy at the High Flux Reactor Petten.
    Moss RL
    Basic Life Sci; 1990; 54():169-83. PubMed ID: 2268238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of radioactivity in the bodies of mice induced by neutron exposure from an epi-thermal neutron source of an accelerator-based boron neutron capture therapy system.
    Nakamura S; Imamichi S; Masumoto K; Ito M; Wakita A; Okamoto H; Nishioka S; Iijima K; Kobayashi K; Abe Y; Igaki H; Kurita K; Nishio T; Masutani M; Itami J
    Proc Jpn Acad Ser B Phys Biol Sci; 2017; 93(10):821-831. PubMed ID: 29225308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transplantable mouse neoplasm control by neutron capture therapy.
    Farr LE; Konikowski T
    Nature; 1967 Jul; 215(5100):550-2. PubMed ID: 6057936
    [No Abstract]   [Full Text] [Related]  

  • 13. In vitro determination of toxicity, binding, retention, subcellular distribution and biological efficacy of the boron neutron capture agent DAC-1.
    Tilly N; Olsson P; Hartman T; Coderre J; Makar M; Malmquist J; Sjöberg S; Pettersson J; Carlsson J; Glimelius B
    Radiother Oncol; 1996 Jan; 38(1):41-50. PubMed ID: 8850425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport calculations of the influence of physical factors on depth-dose distributions in boron neutron capture therapy.
    Matsumoto T
    Phys Med Biol; 1990 Jul; 35(7):971-8. PubMed ID: 2117293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dose calculation in biological samples in a mixed neutron-gamma field at the TRIGA reactor of the University of Mainz.
    Schmitz T; Blaickner M; Schütz C; Wiehl N; Kratz JV; Bassler N; Holzscheiter MH; Palmans H; Sharpe P; Otto G; Hampel G
    Acta Oncol; 2010 Oct; 49(7):1165-9. PubMed ID: 20831509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Use of dimercaptocarborane derivatives in neutron capture therapy].
    Spryshkova RA; Bratsev VA; Shabalkin IP
    Med Radiol (Mosk); 1980 Nov; 25(11):46-50. PubMed ID: 7442488
    [No Abstract]   [Full Text] [Related]  

  • 17. Calibration of the borated ion chamber at NIST reactor thermal column.
    Wang Z; Hertel NE; Lennox A
    Radiat Prot Dosimetry; 2007; 126(1-4):626-30. PubMed ID: 17525059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiobiological evidence suggesting heterogeneous microdistribution of boron compounds in tumors: its relation to quiescent cell population and tumor cure in neutron capture therapy.
    Ono K; Masunaga SI; Kinashi Y; Takagaki M; Akaboshi M; Kobayashi T; Akuta K
    Int J Radiat Oncol Biol Phys; 1996 Mar; 34(5):1081-6. PubMed ID: 8600091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dose monitoring for boron neutron capture therapy using a reactor-based epithermal neutron beam.
    Raaijmakers CP; Nottelman EL; Konijnenberg MW; Mijnheer BJ
    Phys Med Biol; 1996 Dec; 41(12):2789-97. PubMed ID: 8971969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RBEs of nuclear reactor beams and thermal neutrons in responses of B-16 melanoma.
    Ujeno Y; Takimoto K; Kanda K; Kobayashi T; Ono K
    Strahlentherapie; 1981 Oct; 157(10):682-4. PubMed ID: 7303025
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.