These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 5661589)

  • 1. Action of gramicidin on mitochondria. II. Ion-dependent mitochondrial volume changes energized by substrate oxidation.
    Hadler HI; Falcone AB
    Arch Biochem Biophys; 1968 Mar; 124(1):110-4. PubMed ID: 5661589
    [No Abstract]   [Full Text] [Related]  

  • 2. Action of gramicidin on mitochondia. I. Ion-dependent mitochondrial volume changes energized by adenosine 5'-triphosphate.
    Falcone AB; Hadler HI
    Arch Biochem Biophys; 1968 Mar; 124(1):91-109. PubMed ID: 4232569
    [No Abstract]   [Full Text] [Related]  

  • 3. Mitochondrial energy flux and ion-induced adenosine triphosphatase activity and light-scattering changes mediated by gramicidin.
    Wenner CE; Hackney JH
    Biochemistry; 1969 Mar; 8(3):930-8. PubMed ID: 4238424
    [No Abstract]   [Full Text] [Related]  

  • 4. Action of gramicidin on mitochondria. 3. Activity of gramicidin derivatives.
    Falcone AB; Hadler HI
    Arch Biochem Biophys; 1968 Mar; 124(1):115-21. PubMed ID: 4232566
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of pH on gramicidin-mediated changes in lightscattering, ion uptake, and ATP exchange in digitonin particles.
    Meisner HM; Wenner CE
    Biochim Biophys Acta; 1970 Nov; 223(1):46-54. PubMed ID: 5530115
    [No Abstract]   [Full Text] [Related]  

  • 6. GRAMICIDIN AND ION TRANSPORT IN ISOLATED LIVER MITOCHONDRIA.
    CHAPPELL JB; CROFTS AR
    Biochem J; 1965 May; 95(2):393-402. PubMed ID: 14340090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pivotal position of the mitochondrial thiol group exposed by dinitrophenol located by means of ATP energized mitochondrial volume changes requiring gramicidin, showdomycin, and dinitriphenol.
    Hadler HI; Claybourn BE; Tschang TP; Moreau TL
    J Antibiot (Tokyo); 1969 May; 22(5):183-8. PubMed ID: 5811390
    [No Abstract]   [Full Text] [Related]  

  • 8. Differential effects of mercurial reagents on membrane thiols and on the permeability of the heart mitochondrion.
    Scott KM; Knight VA; Settlemire CT; Brierley GP
    Biochemistry; 1970 Feb; 9(4):714-24. PubMed ID: 5417392
    [No Abstract]   [Full Text] [Related]  

  • 9. The induction of ATP energized mitochondrial volume changes by showdomycin when combined with 4',8'-dihydroxy-1,2,5,6-dibenz-9,10-anthraquinone, a metabolite of the carcinogenic polynuclear hydrocarbon dibenz(A,H) anthracene.
    Hadler HI; Daniel BG; Demetrious J; Pratt RC
    J Antibiot (Tokyo); 1971 Dec; 24(12):835-45. PubMed ID: 4258756
    [No Abstract]   [Full Text] [Related]  

  • 10. Monovalent cations and mitochondrial ATPase activity.
    Cereijo-Santaló R
    Can J Biochem; 1968 Jan; 46(1):55-61. PubMed ID: 4230655
    [No Abstract]   [Full Text] [Related]  

  • 11. The effect of mercuric chloride and certain sulfhydryl compounds on the changes in optical density of suspensions of Pseudomonas aeruginosa in sodium, potassium, and sodium-potassium buffers.
    Bernheim F
    Biochem Pharmacol; 1966 Aug; 15(8):1105-10. PubMed ID: 4963241
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of monazomycin on ion transport and oxidative phosphorylation in liver mitochondria.
    Estrada-O S; Gómez-Lojero C
    Biochemistry; 1971 Apr; 10(9):1598-603. PubMed ID: 4253013
    [No Abstract]   [Full Text] [Related]  

  • 13. Control of succinate oxidation by succinate-uptake by rat-liver mitochondria.
    Quagliariello E; Palmieri F
    Eur J Biochem; 1968 Mar; 4(1):20-7. PubMed ID: 4296406
    [No Abstract]   [Full Text] [Related]  

  • 14. Involvement of thiol function in the activity of energy transfer factor D of mitochondrial oxidative phosphorylation.
    Sani BP; Sanadi DR
    Arch Biochem Biophys; 1971 Nov; 147(1):351-2. PubMed ID: 4329865
    [No Abstract]   [Full Text] [Related]  

  • 15. Ion transport by heart mitochondria. XII. Activation of monovalent cation uptake by sulfhydrly group reagents.
    Brierley GP; Knight VA; Settlemire CT
    J Biol Chem; 1968 Oct; 243(19):5035-43. PubMed ID: 4971346
    [No Abstract]   [Full Text] [Related]  

  • 16. The inhibition of mitochondrial energized processes by fluorescein mercuric acetate.
    Lee MJ; Harris RA; Wakabayashi T; Green DE
    J Bioenerg; 1971 Feb; 2(1):13-31. PubMed ID: 5137336
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterization of Ca2+ transport in Euglena gracilis mitochondria.
    Uribe A; Chávez E; Jiménez M; Zazueta C; Moreno-Sánchez R
    Biochim Biophys Acta; 1994 Jun; 1186(1-2):107-16. PubMed ID: 7516710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy-linked ion movements in mitochondrial systems.
    Lehninger AL; Carafoli E; Rossi CS
    Adv Enzymol Relat Areas Mol Biol; 1967; 29():259-320. PubMed ID: 4881885
    [No Abstract]   [Full Text] [Related]  

  • 19. The mechanism of mitochondrial swelling. IV. Configurational changes during swelling of beef heart mitochondria.
    Asai J; Blondin GA; Vail WJ; Green DE
    Arch Biochem Biophys; 1969 Jul; 132(2):524-44. PubMed ID: 5797338
    [No Abstract]   [Full Text] [Related]  

  • 20. Potassium Ion-dependent hydrolysis of adenosine triphosphate induced by nigericin in mitochondria.
    Estrada-O S; Graven SN; Lardy HA
    J Biol Chem; 1967 Jun; 242(12):2925-32. PubMed ID: 4226121
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.