These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 5662672)
1. [Participation of metals in the evolution of oxidation-reduction processes of plants]. Boĭchenko EA Izv Akad Nauk SSSR Biol; 1968; 1():24-33. PubMed ID: 5662672 [No Abstract] [Full Text] [Related]
2. [Participation of polyvalent metals in the evolution of oxidoreductases]. Boĭchenko EA; Oparin AI Zh Evol Biokhim Fiziol; 1977; 13(5):541-4. PubMed ID: 919901 [TBL] [Abstract][Full Text] [Related]
3. [Compounds of metals with flavin nucleotides in the evolution of cells]. Boĭchenko EA Zh Evol Biokhim Fiziol; 1973; 9(1):14-9. PubMed ID: 4756708 [No Abstract] [Full Text] [Related]
4. [The significance of metals in oxidation-reduction reactions of plants]. Boĭchenko EA Usp Sovrem Biol; 1966; 62(1):23-41. PubMed ID: 4881279 [No Abstract] [Full Text] [Related]
5. [The significance of metal compounds in the evolution of the dehydrogenases]. Boĭchenko EA; Oparin AI Zh Evol Biokhim Fiziol; 1979; 15(1):3-7. PubMed ID: 95836 [No Abstract] [Full Text] [Related]
6. Bacterial catalytic processes for transformation of metals. Paknikar KM Hindustan Antibiot Bull; 1993; 35(1-2):183-9. PubMed ID: 8181951 [TBL] [Abstract][Full Text] [Related]
8. Quinone oxidoreductases of the plasma membrane. Morré DJ Methods Enzymol; 2004; 378():179-99. PubMed ID: 15038969 [No Abstract] [Full Text] [Related]
9. Theoretical comparison of how soil processes affect uptake of metals by diffusive gradients in thinfilms and plants. Lehto NJ; Davison W; Zhang H; Tych W J Environ Qual; 2006; 35(5):1903-13. PubMed ID: 16973632 [TBL] [Abstract][Full Text] [Related]
10. Plant adenosine 5'-phosphosulphate reductase: the past, the present, and the future. Kopriva S; Koprivova A J Exp Bot; 2004 Aug; 55(404):1775-83. PubMed ID: 15208336 [TBL] [Abstract][Full Text] [Related]
11. The relationship between metal toxicity and cellular redox imbalance. Sharma SS; Dietz KJ Trends Plant Sci; 2009 Jan; 14(1):43-50. PubMed ID: 19070530 [TBL] [Abstract][Full Text] [Related]
12. Design and construction of wetlands for aqueous transfers and transformations of selected metals. Hawkins WB; Rodgers JH; Gillespie WB; Dunn AW; Dorn PB; Cano ML Ecotoxicol Environ Saf; 1997 Apr; 36(3):238-48. PubMed ID: 9143452 [TBL] [Abstract][Full Text] [Related]
13. Modulation of plant ion channels by oxidizing and reducing agents. Scholz-Starke J; Gambale F; Carpaneto A Arch Biochem Biophys; 2005 Feb; 434(1):43-50. PubMed ID: 15629107 [TBL] [Abstract][Full Text] [Related]
14. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Mishra VK; Tripathi BD Bioresour Technol; 2008 Oct; 99(15):7091-7. PubMed ID: 18296043 [TBL] [Abstract][Full Text] [Related]
15. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Pourcel L; Routaboul JM; Cheynier V; Lepiniec L; Debeaujon I Trends Plant Sci; 2007 Jan; 12(1):29-36. PubMed ID: 17161643 [TBL] [Abstract][Full Text] [Related]
16. [Oxidizing enzymes from higher plants. III. Study on the relative acceptor and donator specificity of glycolic oxidase]. FRANKE W; SCHULZ I; DE BOER W Hoppe Seylers Z Physiol Chem; 1956 Feb; 303(1-2):70-7. PubMed ID: 13331458 [No Abstract] [Full Text] [Related]
18. The effect of emergent macrophytes on the dynamics of sulfur species and trace metals in wetland sediments. Choi JH; Park SS; Jaffé PR Environ Pollut; 2006 Mar; 140(2):286-93. PubMed ID: 16168538 [TBL] [Abstract][Full Text] [Related]
19. Geology. The story of O2. Falkowski PG; Isozaki Y Science; 2008 Oct; 322(5901):540-2. PubMed ID: 18948530 [No Abstract] [Full Text] [Related]