These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 5665980)

  • 1. Influence of nitrogen source on formation of chloramphenicol in cultures of Streptomyces sp. 3022a.
    Westlake DW; Sala F; McGrath R; Vining LC
    Can J Microbiol; 1968 May; 14(5):587-93. PubMed ID: 5665980
    [No Abstract]   [Full Text] [Related]  

  • 2. Biosynthesis of chloramphenicol.
    Westlake DW; Vining LC
    Biotechnol Bioeng; 1969 Nov; 11(6):1125-34. PubMed ID: 5365805
    [No Abstract]   [Full Text] [Related]  

  • 3. Biosynthesis of chloramphenicol. 3. Phenylpropanoid intermediates.
    McGrath R; Vining LC; Sala F; Westlake DW
    Can J Biochem; 1968 Jun; 46(6):587-94. PubMed ID: 5660416
    [No Abstract]   [Full Text] [Related]  

  • 4. Suppression of nitrate utilization by ammonium and its relationship to chloramphenicol production in Streptomyces venezuelae.
    Shapiro S; Vining LC
    Can J Microbiol; 1984 Jun; 30(6):798-804. PubMed ID: 6488103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of ammonium on chloramphenicol production by Streptomyces venezuelae in batch and continuous cultures.
    Shapiro S; Vining LC
    Can J Microbiol; 1985 Feb; 31(2):119-23. PubMed ID: 3886114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of carbon & nitrogen sources on the biosynthesis of litmocidin by a new strain of Streptomyces litmocidini.
    Abou-Zeid AZ
    Indian J Exp Biol; 1970 Jul; 8(3):231-2. PubMed ID: 5494288
    [No Abstract]   [Full Text] [Related]  

  • 7. Biosynthesis of chloramphenicol. II. p-Aminophenylalanine as a precursor of the p-nitrophenylserinol moiety.
    Siddiqueullah M; McGrath R; Vining LC
    Can J Biochem; 1967 Dec; 45(12):1881-9. PubMed ID: 4295530
    [No Abstract]   [Full Text] [Related]  

  • 8. Role of the carbon source in regulating chloramphenicol production by Streptomyces venezuelae: studies in batch and continuous cultures.
    Bhatnagar RK; Doull JL; Vining LC
    Can J Microbiol; 1988 Nov; 34(11):1217-23. PubMed ID: 3208198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of chloramphenicol in Streptomyces sp. 3022a. Properties of an aminotransferase accepting p-aminophenylalanine as a substrate.
    Jones A; Francis MM; Vining LC
    Can J Microbiol; 1978 Mar; 24(3):238-44. PubMed ID: 647477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of chloramphenicol on its biosynthesis by Streptomyces species 3022a.
    Malik VS; Vining LC
    Can J Microbiol; 1972 Feb; 18(2):137-43. PubMed ID: 5018695
    [No Abstract]   [Full Text] [Related]  

  • 11. The influence of nitrogenous compounds on growth of Pythium species.
    Agnihotri VP; Vaartaja O
    Can J Microbiol; 1967 Nov; 13(11):1509-19. PubMed ID: 6064042
    [No Abstract]   [Full Text] [Related]  

  • 12. Nutritional studies on species and mutants of Lepista, Cantharellus, Pleurotus and Volvariella.
    Volz PA
    Mycopathol Mycol Appl; 1972 Nov; 48(2):175-85. PubMed ID: 4674235
    [No Abstract]   [Full Text] [Related]  

  • 13. Regulation of chloramphenicol synthesis in Streptomyces sp. 3022a. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthetase.
    Lowe DA; Westlake DW
    Can J Biochem; 1971 Apr; 49(4):448-55. PubMed ID: 5552828
    [No Abstract]   [Full Text] [Related]  

  • 14. Biosynthesis of chloramphenicol in Streptomyces species 3022a. Isotope incorporation experiments with (G-14C) chorismic, (G-14C) prephenic, and (G-14C, 6-3H) shikimic acids.
    Emes A; Floss HG; Lowe DA; Westlake DW; Vining LC
    Can J Microbiol; 1974 Mar; 20(3):347-52. PubMed ID: 4822053
    [No Abstract]   [Full Text] [Related]  

  • 15. [Mycobacteria isolated from layers of water of North-East Sakhalin oil beds].
    Norenkova IK
    Mikrobiologiia; 1966; 35(5):890-3. PubMed ID: 6002794
    [No Abstract]   [Full Text] [Related]  

  • 16. p-Aminophenylalanine and threo-p-aminophenylserine; specific precursors of chloramphenicol.
    McGrath R; Siddiqueullah M; Vining LC; Sala F; Westlake DW
    Biochem Biophys Res Commun; 1967 Nov; 29(4):576-81. PubMed ID: 16496538
    [No Abstract]   [Full Text] [Related]  

  • 17. Regulation of the formation of protease in Bacillus megaterium. 3. Enzyme production under limitation of nitrogen source.
    Din FU; Krecková P; Chaloupka J
    Folia Microbiol (Praha); 1969; 14(1):70-6. PubMed ID: 4977833
    [No Abstract]   [Full Text] [Related]  

  • 18. Nitrogen metabolism and chloramphenicol production in Streptomyces venezuelae.
    Shapiro S; Vining LC
    Can J Microbiol; 1983 Dec; 29(12):1706-14. PubMed ID: 6143605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Formation of proteolytic enzymes by Fusarium graminearum and Alternaria sp. fungi in relation to nitrogen sources in the medium].
    Prudlov B; Ushakova VI; Egorov NS
    Mikrobiologiia; 1973; 42(2):203-7. PubMed ID: 4797720
    [No Abstract]   [Full Text] [Related]  

  • 20. Regulation of chloramphenicol synthesis in Streptomyces sp. 3022a. Properties of arylamine synthetase, an enzyme involved in antibiotic biosynthesis.
    Jones A; Westlake DW
    Can J Microbiol; 1974 Nov; 20(11):1599-611. PubMed ID: 4373156
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.