BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 5666118)

  • 1. Factors that limit brain volume changes in response to acute and sustained hyper- and hyponatremia.
    Holliday MA; Kalayci MN; Harrah J
    J Clin Invest; 1968 Aug; 47(8):1916-28. PubMed ID: 5666118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular volume decreases while cell volume is maintained by ion uptake in rat brain during acute hypernatremia.
    Cserr HF; DePasquale M; Nicholson C; Patlak CS; Pettigrew KD; Rice ME
    J Physiol; 1991 Oct; 442():277-95. PubMed ID: 1798030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain and CSF water and ions in newborn puppies during acute hypo- and hypernatremia.
    Nattie EE; Edwards WH
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Nov; 51(5):1086-91. PubMed ID: 7298447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmotic adaptation of the brains of scalded rats to chronic increase in plasma Na+. Effects of corticosteroids.
    Hopt U; Baethmann A; Brendel W
    Eur Surg Res; 1980; 12(4):248-59. PubMed ID: 7250154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurological manifestations and morbidity of hyponatremia: correlation with brain water and electrolytes.
    Arieff AI; Llach F; Massry SG
    Medicine (Baltimore); 1976 Mar; 55(2):121-9. PubMed ID: 1256311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain and CSF water and ions during dilutional and isosmotic hyponatremia in the rat.
    Melton JE; Nattie EE
    Am J Physiol; 1983 May; 244(5):R724-32. PubMed ID: 6846578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of brain water and electrolytes during acute hyperosmolality in rats.
    Cserr HF; DePasquale M; Patlak CS
    Am J Physiol; 1987 Sep; 253(3 Pt 2):F522-9. PubMed ID: 3115115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volume regulatory loss of Na, Cl, and K from rat brain during acute hyponatremia.
    Melton JE; Patlak CS; Pettigrew KD; Cserr HF
    Am J Physiol; 1987 Apr; 252(4 Pt 2):F661-9. PubMed ID: 3565577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights into the pathophysiology of the dysnatremias: a quantitative analysis.
    Nguyen MK; Kurtz I
    Am J Physiol Renal Physiol; 2004 Aug; 287(2):F172-80. PubMed ID: 15271684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmotic regulation of plasma vasopressin and oxytocin after sustained hyponatremia.
    Verbalis JG; Baldwin EF; Robinson AG
    Am J Physiol; 1986 Mar; 250(3 Pt 2):R444-51. PubMed ID: 3953853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell volume regulation: a review of cerebral adaptive mechanisms and implications for clinical treatment of osmolal disturbances: II.
    Trachtman H
    Pediatr Nephrol; 1992 Jan; 6(1):104-12. PubMed ID: 1536729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain ion and volume regulation during acute hypernatremia in Brattleboro rats.
    DePasquale M; Patlak CS; Cserr HF
    Am J Physiol; 1989 Jun; 256(6 Pt 2):F1059-66. PubMed ID: 2735420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volume regulatory influx of electrolytes from plasma to brain during acute hyperosmolality.
    Cserr HF; DePasquale M; Patlak CS
    Am J Physiol; 1987 Sep; 253(3 Pt 2):F530-7. PubMed ID: 3115116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of polyols in cerebral cell volume regulation in hypernatremic and hyponatremic states.
    Trachtman H; Futterweit S; Hammer E; Siegel TW; Oates P
    Life Sci; 1991; 49(9):677-88. PubMed ID: 1907705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain water and electrolyte distribution during the inhalation of halothane.
    Schettini A; Furniss WW
    Br J Anaesth; 1979 Dec; 51(12):1117-24. PubMed ID: 526377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathogenesis of hyponatremia in an experimental model of the syndrome of inappropriate antidiuresis.
    Verbalis JG
    Am J Physiol; 1994 Dec; 267(6 Pt 2):R1617-25. PubMed ID: 7810773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiopathology of the blood-brain barrier.
    Bradbury MW
    Adv Exp Med Biol; 1976; 69():507-16. PubMed ID: 782196
    [No Abstract]   [Full Text] [Related]  

  • 18. Evolving concepts in the quantitative analysis of the determinants of the plasma water sodium concentration and the pathophysiology and treatment of the dysnatremias.
    Kurtz I; Nguyen MK
    Kidney Int; 2005 Nov; 68(5):1982-93. PubMed ID: 16221198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyponatremia and hypernatremia: disorders of water balance.
    Agrawal V; Agarwal M; Joshi SR; Ghosh AK
    J Assoc Physicians India; 2008 Dec; 56():956-64. PubMed ID: 19322975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Electrolyte and acid-base balance disorders in advanced chronic kidney disease].
    Alcázar Arroyo R
    Nefrologia; 2008; 28 Suppl 3():87-93. PubMed ID: 19018744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.