These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 5667)

  • 21. Relationship of transmembrane pH and electrical gradients with respiration and adenosine 5'-triphosphate synthesis in mitochondria.
    Holian A; Wilson DF
    Biochemistry; 1980 Sep; 19(18):4213-21. PubMed ID: 7417402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Structural and kinetic parameters of the oxidative phosphorylation system, participating in the synchronization of mitochondrial respiratory chain and ATP-synthetase functions].
    Marshanskiĭ VN; Krasinskaia IP; Dragunova SF; Iaguzhinskiĭ LS
    Biokhimiia; 1984 Mar; 49(3):403-8. PubMed ID: 6326863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism of carbamoyl-phosphate synthetase. Binding of ATP by the rat-liver mitochondrial enzyme.
    Rubio V; Britton HG; Grisolia S
    Eur J Biochem; 1979 Jan; 93(2):245-56. PubMed ID: 218811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of formate on cytochrome aa3 and on electron transport in the intact respiratory chain.
    Nicholls P
    Biochim Biophys Acta; 1976 Apr; 430(1):13-29. PubMed ID: 4141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ADP and ATP transport in mitochondria and its carrier.
    Klingenberg M
    Biochim Biophys Acta; 2008 Oct; 1778(10):1978-2021. PubMed ID: 18510943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation.
    Wilson DF; Vinogradov SA
    J Appl Physiol (1985); 2014 Dec; 117(12):1431-9. PubMed ID: 25324518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Detection of a paramagnetic product developing during oxidative phosphorylation in mitochondria].
    Vishneskiĭ ES; Brzhevskaia ON; Nedelina OS; Sheksheev EM; Kaiushin LP
    Biofizika; 1980; 25(4):740-1. PubMed ID: 6251923
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supercomplex supercomplexes: Raison d'etre and functional significance of supramolecular organization in oxidative phosphorylation.
    Nath S
    Biomol Concepts; 2022 May; 13(1):272-288. PubMed ID: 35617665
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of the fluorescent probe aurovertin, to monitor energy linked conformational changes in mitochondrial ATPases.
    Layton D; Azzi A; Graziotti P
    FEBS Lett; 1973 Oct; 36(1):87-92. PubMed ID: 4270578
    [No Abstract]   [Full Text] [Related]  

  • 30. Conformational coupling in H+-pumps and ATP synthesis--its analysis with anisotropic inhibitors of energy transduction in oxidative phosphorylation.
    Higuti T
    Mol Cell Biochem; 1984; 61(1):37-61. PubMed ID: 6323966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial cytochrome c oxidase and control of energy metabolism: measurements in suspensions of isolated mitochondria.
    Wilson DF; Harrison DK; Vinogradov A
    J Appl Physiol (1985); 2014 Dec; 117(12):1424-30. PubMed ID: 25324517
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase.
    Belevich I; Verkhovsky MI; Wikström M
    Nature; 2006 Apr; 440(7085):829-32. PubMed ID: 16598262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The mechanism of proton translocation by the cytochrome system of mitochondria. Characterization of proton-transfer reactions associated with oxidoreductions of terminal respiratory carriers.
    Papa S; Guerrieri F; Izzo G
    Biochem J; 1983 Nov; 216(2):259-72. PubMed ID: 6318731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Synchronous (synphaseous) additive models for mitochondrial ATP synthetase complex and for other energy transducing systems of cells (a hypothesis)].
    Fitin AF
    Mol Biol (Mosk); 1982; 16(4):661-75. PubMed ID: 6289082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationships of respiratory chain and ATP-synthetase in energized mitochondria.
    Krasinskaya IP; Marshansky VN; Dragunova SF; Yaguzhinsky LS
    FEBS Lett; 1984 Feb; 167(1):176-80. PubMed ID: 6321235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tissue variant effects of heme inhibitors on the mouse cytochrome c oxidase gene expression and catalytic activity of the enzyme complex.
    Vijayasarathy C; Damle S; Lenka N; Avadhani NG
    Eur J Biochem; 1999 Nov; 266(1):191-200. PubMed ID: 10542064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal inactivation of electron-transport functions and F0F1-ATPase activities.
    Tomita M; Knox BE; Tsong TY
    Biochim Biophys Acta; 1987 Oct; 894(1):16-28. PubMed ID: 2889470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the enzymic mechanism of oxidative phosphorylation.
    Green DE; Vande Zande H
    Proc Natl Acad Sci U S A; 1982 Feb; 79(4):1064-8. PubMed ID: 6280165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Revisiting Kadenbach: Electron flux rate through cytochrome c-oxidase determines the ATP-inhibitory effect and subsequent production of ROS.
    Vogt S; Rhiel A; Weber P; Ramzan R
    Bioessays; 2016 Jun; 38(6):556-67. PubMed ID: 27171124
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Synchronization of the function of respiratory chain enzymes and ATP-synthetase in energized mitochondria].
    Krasinskaia IP; Marshanskiĭ VN; Dragunova SF; Iaguzhinskiĭ LS
    Biokhimiia; 1984 Jan; 49(1):87-92. PubMed ID: 6322871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.