These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 566729)

  • 1. Cultures of Chlamydia trachomatis in mouse peritoneal macrophages: factors affecting organism growth.
    Kuo CC
    Infect Immun; 1978 May; 20(2):439-45. PubMed ID: 566729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immediate cytotoxicity of Chlamydia trachomatis for mouse peritoneal macrophages.
    Kuo CC
    Infect Immun; 1978 Jun; 20(3):613-8. PubMed ID: 352950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of Chlamydia trachomatis organisms and HeLa 229 cells.
    Kuo CC; Grayston T
    Infect Immun; 1976 Apr; 13(4):1103-9. PubMed ID: 179950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systemic Chlamydia trachomatis infection in mice: a comparison of lymphogranuloma venereum and trachoma biovars.
    Brunham RC; Kuo C; Chen WJ
    Infect Immun; 1985 Apr; 48(1):78-82. PubMed ID: 3980097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between a trachoma strain of Chlamydia trachomatis and mouse fibroblasts (McCoy cells) in the absence of centrifugation.
    Lee CK
    Infect Immun; 1981 Feb; 31(2):584-91. PubMed ID: 7216462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrast of Glycogenesis and protein synthesis in monkey kidney cells and HeLa cells infected with Chlamydia trachomatis lymphogranuloma venereum.
    Weigent DA; Jenkin HM
    Infect Immun; 1978 Jun; 20(3):632-9. PubMed ID: 669815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative susceptibility of eleven mammalian cell lines to infection with trachoma organisms.
    Croy TR; Kuo CC; Wang SP
    J Clin Microbiol; 1975 May; 1(5):434-9. PubMed ID: 809479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in susceptibilities of the lymphogranuloma venereum and trachoma biovars of Chlamydia trachomatis to neutralization by immune sera.
    Peterson EM; Hoshiko M; Markoff BA; Lauermann MW; de la Maza LM
    Infect Immun; 1990 Apr; 58(4):938-43. PubMed ID: 2318536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trachoma and LGV biovars of Chlamydia trachomatis share the same glycosaminoglycan-dependent mechanism for infection of eukaryotic cells.
    Chen JC; Stephens RS
    Mol Microbiol; 1994 Feb; 11(3):501-7. PubMed ID: 8152374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antigenic analysis of Chlamydiae by two-dimensional immunoelectrophoresis. II. A trachoma-LGV-specific antigen.
    Caldwell HD; Kuo CC; Kenny GE
    J Immunol; 1975 Oct; 115(4):969-75. PubMed ID: 51883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydia trachomatis glycosaminoglycan-dependent and independent attachment to eukaryotic cells.
    Chen JC; Stephens RS
    Microb Pathog; 1997 Jan; 22(1):23-30. PubMed ID: 9032759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in innate immune responses (in vitro) to HeLa cells infected with nondisseminating serovar E and disseminating serovar L2 of Chlamydia trachomatis.
    Dessus-Babus S; Darville TL; Cuozzo FP; Ferguson K; Wyrick PB
    Infect Immun; 2002 Jun; 70(6):3234-48. PubMed ID: 12011019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of polycations, polyanions and neuraminidase on the infectivity of trachoma-inclusin conjunctivitis and lymphogranuloma venereum organisms HeLa cells: sialic acid residues as possible receptors for trachoma-inclusion conjunction.
    Kuo CC; Wang SP; Grayston JT
    Infect Immun; 1973 Jul; 8(1):74-9. PubMed ID: 4718924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential antimicrobial activity of human mononuclear phagocytes against the human biovars of Chlamydia trachomatis.
    Yong EC; Chi EY; Kuo CC
    J Immunol; 1987 Aug; 139(4):1297-302. PubMed ID: 3112229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunotyping of Chlamydia trachomatis with monoclonal antibodies.
    Wang SP; Kuo CC; Barnes RC; Stephens RS; Grayston JT
    J Infect Dis; 1985 Oct; 152(4):791-800. PubMed ID: 4045232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunity to Chlamydia trachomatis mouse pneumonitis induced by vaccination with live organisms correlates with early granulocyte-macrophage colony-stimulating factor and interleukin-12 production and with dendritic cell-like maturation.
    Zhang D; Yang X; Lu H; Zhong G; Brunham RC
    Infect Immun; 1999 Apr; 67(4):1606-13. PubMed ID: 10084993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification of Chlamydia trachomatis lymphogranuloma venereum elementary bodies and their interaction with HeLa cells.
    Bose SK; Paul RG
    J Gen Microbiol; 1982 Jun; 128(6):1371-9. PubMed ID: 6288839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of mouse peritoneal macrophages in vitro or in vivo by recombinant murine gamma interferon inhibits the growth of Chlamydia trachomatis serovar L1.
    Zhong GM; de la Maza LM
    Infect Immun; 1988 Dec; 56(12):3322-5. PubMed ID: 3141289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Less inhibition of interferon-gamma to organism growth in host cells may contribute to the high susceptibility of C3H mice to Chlamydia trachomatis lung infection.
    Qiu H; Yang J; Bai H; Fan Y; Wang S; Han X; Chen L; Yang X
    Immunology; 2004 Apr; 111(4):453-61. PubMed ID: 15056383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep comparative genomics among Chlamydia trachomatis lymphogranuloma venereum isolates highlights genes potentially involved in pathoadaptation.
    Borges V; Gomes JP
    Infect Genet Evol; 2015 Jun; 32():74-88. PubMed ID: 25745888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.