These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 566796)

  • 1. Free amino acid pool in the brain of mice homozygous for the gene "dilute lethal".
    Simler S; Essayag S; Ledig M; Koehl C; Mandel P
    J Neurosci Res; 1977; 3(4):281-7. PubMed ID: 566796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Future role of large neutral amino acids in transport of phenylalanine into the brain.
    Matalon R; Surendran S; Matalon KM; Tyring S; Quast M; Jinga W; Ezell E; Szucs S
    Pediatrics; 2003 Dec; 112(6 Pt 2):1570-4. PubMed ID: 14654667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the brain barrier system function and changes of cerebrospinal fluid concentrations of phenylalanine and tyrosine in human phenylketonuria.
    Ratzmann GW; Grimm U; Jährig K; Knapp A
    Biomed Biochim Acta; 1984; 43(2):197-204. PubMed ID: 6732755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of neurogenic amines in phenylketonuria mice after liver-targeted gene therapy.
    Yagi H; Sanechika S; Ichinose H; Sumi-Ichinose C; Mizukami H; Urabe M; Ozawa K; Kume A
    Neuroreport; 2012 Jan; 23(1):30-4. PubMed ID: 22107842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of growth of cells in culture by L-phenylalanine as a model system for the analysis of phenylketonuria. I. aminoacid antagonism and the inhibition of protein synthesis.
    Dillehay L; Bass R; Englesberg E
    J Cell Physiol; 1980 Mar; 102(3):395-405. PubMed ID: 7190152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of liver and brain aromatic amino-acid metabolism by phenylalanine hydroxylase.
    Tourian A
    Vopr Biokhim Mozga; 1973; 8():211-9. PubMed ID: 4281155
    [No Abstract]   [Full Text] [Related]  

  • 7. [Disorders of phenylalanine and tyrosine metabolism in Down's syndrome].
    Shaposhnikov AM; Khal'chitskiĭ SE; Shvarts EI
    Vopr Med Khim; 1979; 25(1):15-9. PubMed ID: 154771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Metabolism of amino acids and brain proteins in phenylketonuria].
    Borkowska I
    Postepy Biochem; 1979; 25(2):159-68. PubMed ID: 574271
    [No Abstract]   [Full Text] [Related]  

  • 9. Alterations related to the cerebral free amino acid pool during development.
    Lajtha A; Piccoli F
    UCLA Forum Med Sci; 1971; 14():419-46. PubMed ID: 4399510
    [No Abstract]   [Full Text] [Related]  

  • 10. [Phenylalanine and tyrosine in albino rat brain in the normal state and in experimental phenylketonuria].
    Kaplanskiĭ SIa; Akopian ZhI
    Ukr Biokhim Zh; 1967; 39(1):34-7. PubMed ID: 5628879
    [No Abstract]   [Full Text] [Related]  

  • 11. Reversal of gene expression profile in the phenylketonuria mouse model after adeno-associated virus vector-mediated gene therapy.
    Oh HJ; Lee H; Park JW; Rhee H; Koo SK; Kang S; Jo I; Jung SC
    Mol Genet Metab; 2005 Dec; 86 Suppl 1():S124-32. PubMed ID: 16150627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyrosine supplementation in phenylketonuria: diurnal blood tyrosine levels and presumptive brain influx of tyrosine and other large neutral amino acids.
    Kalsner LR; Rohr FJ; Strauss KA; Korson MS; Levy HL
    J Pediatr; 2001 Sep; 139(3):421-7. PubMed ID: 11562623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid intoxication.
    Food Cosmet Toxicol; 1971 Feb; 9(1):137-40. PubMed ID: 4932107
    [No Abstract]   [Full Text] [Related]  

  • 14. Multicompartment analysis of protein-restricted phenylketonuric mice reveals amino acid imbalances in brain.
    Vogel KR; Arning E; Bottiglieri T; Gibson KM
    J Inherit Metab Dis; 2017 Mar; 40(2):227-235. PubMed ID: 27761676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of action of ochratoxin A.
    Dirheimer G; Creppy EE
    IARC Sci Publ; 1991; (115):171-86. PubMed ID: 1820332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The control of aromatic amino acid catabolism and its relationship to neurotransmitter amine synthesis.
    Pogson CI; Knowles RG; Salter M
    Crit Rev Neurobiol; 1989; 5(1):29-64. PubMed ID: 2569940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free amino acids in the tissues of rats with experimentally induced phenylketonuria.
    Valdivieso F; Ugarte M; Maties M; Gimenez C; Mayor F
    J Ment Defic Res; 1977 Jun; 21(2):95-102. PubMed ID: 142842
    [No Abstract]   [Full Text] [Related]  

  • 18. Impaired arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) acid synthesis by phenylalanine metabolites as etiological factors in the neuropathology of phenylketonuria.
    Infante JP; Huszagh VA
    Mol Genet Metab; 2001 Mar; 72(3):185-98. PubMed ID: 11243724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of aromatic acids on protein synthesis in subcellular preparations from the rat brain.
    Lähdesmäki P; Oja SS
    J Neurobiol; 1975 May; 6(3):313-20. PubMed ID: 1185188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of phenylalanine in mice homozygous for the gene 'dilute lethal'.
    Woolf LI; Jakubovic A; Woolf F; Bory P
    Biochem J; 1970 Oct; 119(5):895-903. PubMed ID: 5531182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.