These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 566829)
1. Ammonia: basis for algal symbiosis in salamander egg masses. Goff LJ; Stein JR Life Sci; 1978 Apr; 22(16):1463-8. PubMed ID: 566829 [No Abstract] [Full Text] [Related]
2. Acid water interferes with salamander-green algae symbiosis during early embryonic development. Bianchini K; Tattersall GJ; Sashaw J; Porteus CS; Wright PA Physiol Biochem Zool; 2012; 85(5):470-80. PubMed ID: 22902375 [TBL] [Abstract][Full Text] [Related]
3. Phylogenetic analysis of algal symbionts associated with four North American amphibian egg masses. Kim E; Lin Y; Kerney R; Blumenberg L; Bishop C PLoS One; 2014; 9(11):e108915. PubMed ID: 25393119 [TBL] [Abstract][Full Text] [Related]
4. Intracapsular algae provide fixed carbon to developing embryos of the salamander Ambystoma maculatum. Graham ER; Fay SA; Davey A; Sanders RW J Exp Biol; 2013 Feb; 216(Pt 3):452-9. PubMed ID: 23038736 [TBL] [Abstract][Full Text] [Related]
5. Effects of atrazine on egg masses of the yellow-spotted salamander (Ambystoma maculatum) and its endosymbiotic alga (Oophila amblystomatis). Baxter L; Brain RA; Hosmer AJ; Nema M; Müller KM; Solomon KR; Hanson ML Environ Pollut; 2015 Nov; 206():324-31. PubMed ID: 26219074 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome analysis illuminates the nature of the intracellular interaction in a vertebrate-algal symbiosis. Burns JA; Zhang H; Hill E; Kim E; Kerney R Elife; 2017 May; 6():. PubMed ID: 28462779 [TBL] [Abstract][Full Text] [Related]
7. Intracellular invasion of green algae in a salamander host. Kerney R; Kim E; Hangarter RP; Heiss AA; Bishop CD; Hall BK Proc Natl Acad Sci U S A; 2011 Apr; 108(16):6497-502. PubMed ID: 21464324 [TBL] [Abstract][Full Text] [Related]
8. Physiological benefits and latent effects of an algal-salamander symbiosis. Small DP; Bishop CD Comp Biochem Physiol A Mol Integr Physiol; 2020 Aug; 246():110715. PubMed ID: 32320756 [TBL] [Abstract][Full Text] [Related]
9. Bacterial Diversity in Egg Capsular Fluid of the Spotted Salamander Ambystoma maculatum Decreases with Embryonic Development. Burgess WL; Bishop CD Microb Ecol; 2023 Oct; 86(3):1789-1798. PubMed ID: 37148310 [TBL] [Abstract][Full Text] [Related]
11. Taxonomy and nomenclature of Oophila amblystomatis (Chlorophyceae, Chlamydomonadales). Bishop CD; Garbary DJ J Phycol; 2024 Apr; 60(2):380-386. PubMed ID: 38224483 [TBL] [Abstract][Full Text] [Related]
12. Response of the green alga Oophila sp., a salamander endosymbiont, to a PSII-inhibitor under laboratory conditions. Baxter L; Brain R; Rodriguez-Gil JL; Hosmer A; Solomon K; Hanson M Environ Toxicol Chem; 2014 Aug; 33(8):1858-64. PubMed ID: 24782078 [TBL] [Abstract][Full Text] [Related]
13. Persistence of an egg mass polymorphism in Ambystoma maculatum: differential performance under high and low nutrients. Pintar MR; Resetarits WJ Ecology; 2017 May; 98(5):1349-1360. PubMed ID: 28247910 [TBL] [Abstract][Full Text] [Related]
14. Density of an intraguild predator mediates feeding group size, intraguild egg predation, and intra- and interspecific competition. Burley LA; Moyer AT; Petranka JW Oecologia; 2006 Jul; 148(4):641-9. PubMed ID: 16514532 [TBL] [Abstract][Full Text] [Related]
15. Insights into the mating habits of the tiger salamander (Ambystoma tigrinum tigrinum) as revealed by genetic parentage analyses. Gopurenko D; Williams RN; McCormick CR; DeWoody JA Mol Ecol; 2006 Jun; 15(7):1917-28. PubMed ID: 16689907 [TBL] [Abstract][Full Text] [Related]
16. Toxicity of nitrite to larvae of the salamander Ambystoma texanum. Huey DW; Beitinger TL Bull Environ Contam Toxicol; 1980 Dec; 25(6):909-12. PubMed ID: 7470668 [No Abstract] [Full Text] [Related]
17. Correlation of ammonia liberation and calcium deposition by the avian egg and blood ammonia levels in the laying hen. Reddy G; Campbell JW Experientia; 1972 May; 28(5):530-2. PubMed ID: 5064810 [No Abstract] [Full Text] [Related]
18. Photosynthetic carbon from algal symbionts peaks during the latter stages of embryonic development in the salamander Ambystoma maculatum. Graham ER; McKie-Krisberg ZM; Sanders RW BMC Res Notes; 2014 Oct; 7():764. PubMed ID: 25348817 [TBL] [Abstract][Full Text] [Related]
19. Intermittent hypoxia in eggs of Ambystoma maculatum: embryonic development and egg capsule conductance. Valls JH; Mills NE J Exp Biol; 2007 Jul; 210(Pt 14):2430-5. PubMed ID: 17601946 [TBL] [Abstract][Full Text] [Related]
20. Heterotrophic Carbon Fixation in a Salamander-Alga Symbiosis. Burns JA; Kerney R; Duhamel S Front Microbiol; 2020; 11():1815. PubMed ID: 32849422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]