These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 5669899)

  • 1. Metabolism of lactose by Staphylococcus aureus and its genetic basis.
    Morse ML; Hill KL; Egan JB; Hengstenberg W
    J Bacteriol; 1968 Jun; 95(6):2270-4. PubMed ID: 5669899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships between the regulation of the lactose and galactose operons of Escherichia coli.
    Williams B; Paigen K
    J Bacteriol; 1969 Feb; 97(2):769-75. PubMed ID: 4886293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutant of Escherichia coli exhibiting a cold-sensitive phenotype for growth on lactose.
    Squires CK; Ingraham JL
    J Bacteriol; 1969 Feb; 97(2):488-94. PubMed ID: 4886277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of hydrolysis of O-nitrophenyl-beta-galactoside in Staphylococcus aureus and its significance for theories of sugar transport.
    Kennedy EP; Scarborough GA
    Proc Natl Acad Sci U S A; 1967 Jul; 58(1):225-8. PubMed ID: 5341056
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses.
    McKay L; Miller A; Sandine WE; Elliker PR
    J Bacteriol; 1970 Jun; 102(3):804-9. PubMed ID: 5429725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants.
    Cords BR; McKay LL
    J Bacteriol; 1974 Sep; 119(3):830-9. PubMed ID: 4368487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbohydrate transport in Staphylococcus aureus. V. The accumulation of phosphorylated carbohydrate derivatives, and evidence for a new enzyme-splitting lactose phosphate.
    Hengstenberg W; Egan JB; Morse ML
    Proc Natl Acad Sci U S A; 1967 Jul; 58(1):274-9. PubMed ID: 4292101
    [No Abstract]   [Full Text] [Related]  

  • 8. Studies on beta-galactoside transport in a Proteus mirabilis merodiploid carrying an Escherichia coli lactose operon.
    Stubbs J; Horwitz A; Moses V
    J Bacteriol; 1973 Oct; 116(1):131-40. PubMed ID: 4583204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. INDUCTION OF LACTOSE UTILIZATION IN STAPHYLOCOCCUS AUREUS.
    MCCLATCHY JK; ROSENBLUM ED
    J Bacteriol; 1963 Dec; 86(6):1211-5. PubMed ID: 14086091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the relation of thiomethyl-beta-D-galactoside accumulation to thiomethyl-beta-D-galactoside phosphorylation in Staphylococcus aureus HS1159.
    Laue P; MacDonald RE
    Biochim Biophys Acta; 1968 Oct; 165(3):410-8. PubMed ID: 5737935
    [No Abstract]   [Full Text] [Related]  

  • 11. Sugar transport. VII. Lactose transport in Staphylococcus aureus.
    Simoni RD; Roseman S
    J Biol Chem; 1973 Feb; 248(3):966-74. PubMed ID: 4684717
    [No Abstract]   [Full Text] [Related]  

  • 12. Expression and regulation of lactose genes carried by plasmids.
    Guiso N; Ullmann A
    J Bacteriol; 1976 Aug; 127(2):691-7. PubMed ID: 783115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of lactose by Staphylococcus aureus.
    Hengstenberg W; Penberthy WK; Hill KL; Morse ML
    J Bacteriol; 1968 Dec; 96(6):2187-8. PubMed ID: 5724980
    [No Abstract]   [Full Text] [Related]  

  • 14. Regulation of lactose catabolism in Streptococcus mutans: purification and regulatory properties of phospho-beta-galactosidase.
    Calmes R; Brown AT
    Infect Immun; 1979 Jan; 23(1):68-79. PubMed ID: 33899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic evidence for the physiological significance of the D-tagatose 6-phosphate pathway of lactose and D-galactose degradation in staphylococcus aureus.
    Bissett DL; Anderson RL
    J Bacteriol; 1974 Sep; 119(3):698-704. PubMed ID: 4277494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose effect and the galactose enzymes of Escherichia coli: correlation between glucose inhibition of induction and inducer transport.
    Adhya S; Echols H
    J Bacteriol; 1966 Sep; 92(3):601-8. PubMed ID: 5332079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational inversion of control of the lactose operon of Escherichia coli.
    Myers GL; Sadler JR
    J Mol Biol; 1971 May; 58(1):1-28. PubMed ID: 4932654
    [No Abstract]   [Full Text] [Related]  

  • 18. Physiological studies of beta-galactosidase induction in Kluyveromyces lactis.
    Dickson RC; Markin JS
    J Bacteriol; 1980 Jun; 142(3):777-85. PubMed ID: 6769910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphotransferase system of Staphylococcus aureus: its requirement for the accumulation and metabolism of galactosides.
    Hengstenberg W; Penberthy WK; Hill KL; Morse ML
    J Bacteriol; 1969 Aug; 99(2):383-8. PubMed ID: 5808069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of lac genes in induction of beta-galactosidase synthesis by galactose.
    Llanes B; McFall E
    J Bacteriol; 1969 Jan; 97(1):223-9. PubMed ID: 4884813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.