These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 567035)

  • 1. Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of perennial ryegrass (Lolium perenne).
    Latham MJ; Brooker BE; Pettipher GL; Harris PJ
    Appl Environ Microbiol; 1978 Jun; 35(6):1166-73. PubMed ID: 567035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ruminococcus flavefaciens Cell Coat and Adhesion to Cotton Cellulose and to Cell Walls in Leaves of Perennial Ryegrass (Lolium perenne).
    Latham MJ; Brooker BE; Pettipher GL; Harris PJ
    Appl Environ Microbiol; 1978 Jan; 35(1):156-65. PubMed ID: 16345261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron microscopic study of the methylcellulose-mediated detachment of cellulolytic rumen bacteria from cellulose fibers.
    Kudo H; Cheng KJ; Costerton JW
    Can J Microbiol; 1987 Mar; 33(3):267-72. PubMed ID: 3567745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas-liquid chromatography for evaluating polysaccharide degradation by Ruminococcus flavefaciens C94 and Bacteroides succinogenes S85.
    Collings GF; Yokoyama MT
    Appl Environ Microbiol; 1980 Mar; 39(3):566-71. PubMed ID: 7189996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose.
    Kudo H; Cheng KJ; Costerton JW
    Can J Microbiol; 1987 Mar; 33(3):244-8. PubMed ID: 3567744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions.
    Shi Y; Odt CL; Weimer PJ
    Appl Environ Microbiol; 1997 Feb; 63(2):734-42. PubMed ID: 9023950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digestion of cell-wall monosaccharides of ryegrass and alfalfa hays by the ruminal bacteria Fibrobacter succinogenes and Butyrivibrio fibrisolvens.
    Miron J; Ben-Ghedalia D
    Can J Microbiol; 1993 Aug; 39(8):780-6. PubMed ID: 8221378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria.
    Hiltner P; Dehority BA
    Appl Environ Microbiol; 1983 Sep; 46(3):642-8. PubMed ID: 6639018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of barley straw, ryegrass, and alfalfa cell walls by Clostridium longisporum and Ruminococcus albus.
    Varel VH; Richardson AJ; Stewart CS
    Appl Environ Microbiol; 1989 Dec; 55(12):3080-4. PubMed ID: 2619305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions.
    Shi Y; Weimer PJ
    Appl Environ Microbiol; 1997 Feb; 63(2):743-8. PubMed ID: 9023951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between rumen bacterial strains during the degradation and utilization of the monosaccharides of barley straw cell-walls.
    Miron J; Duncan SH; Stewart CS
    J Appl Bacteriol; 1994 Mar; 76(3):282-7. PubMed ID: 8157547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens.
    Koike S; Kobayashi Y
    FEMS Microbiol Lett; 2001 Nov; 204(2):361-6. PubMed ID: 11731149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages.
    Fondevila M; Dehority BA
    J Anim Sci; 1996 Mar; 74(3):678-84. PubMed ID: 8707727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DEGRADATION AND UTILIZATION OF ISOLATED HEMICELLULOSE BY PURE CULTURES OF CELLULOLYTIC RUMEN BACTERIA.
    DEHORITY BA
    J Bacteriol; 1965 Jun; 89(6):1515-20. PubMed ID: 14291590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hydrolysis of lucerne cell-wall monosaccharide components by monocultures or pair combinations of defined ruminal bacteria.
    Miron J
    J Appl Bacteriol; 1991 Mar; 70(3):245-52. PubMed ID: 2030098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of dietary fiber on xylanolytic and cellulolytic bacteria of adult pigs.
    Varel VH; Robinson IM; Jung HJ
    Appl Environ Microbiol; 1987 Jan; 53(1):22-6. PubMed ID: 3030194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of ruminal cellulolytic bacteria on plant fibrous materials as determined by fluorescence in situ hybridization and real-time PCR.
    Shinkai T; Kobayashi Y
    Appl Environ Microbiol; 2007 Mar; 73(5):1646-52. PubMed ID: 17209077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of caproic acid by cocultures of ruminal cellulolytic bacteria and Clostridium kluyveri grown on cellulose and ethanol.
    Kenealy WR; Cao Y; Weimer PJ
    Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):507-13. PubMed ID: 8597554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Invited review: adhesion mechanisms of rumen cellulolytic bacteria.
    Miron J; Ben-Ghedalia D; Morrison M
    J Dairy Sci; 2001 Jun; 84(6):1294-309. PubMed ID: 11417686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesion of cellulolytic ruminal bacteria to barley straw.
    Bhat S; Wallace RJ; Orskov ER
    Appl Environ Microbiol; 1990 Sep; 56(9):2698-703. PubMed ID: 16348278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.