These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 567199)

  • 21. Suppression of IgE antibody production in SJL mice. IV. Interaction of primed and unprimed T cells.
    Itaya T; Ovary Z
    J Exp Med; 1979 Sep; 150(3):507-16. PubMed ID: 314487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. IgE antibody-forming cells in rats infected with Nippostrongylus brasiliensis and immunized with antigens.
    Watanabe N; Kobayashi A
    Cell Immunol; 1988 Sep; 115(2):460-70. PubMed ID: 2900691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of rat IgE-binding factors by rat-mouse T cell hybridomas.
    Huff TF; Uede T; Ishizaka K
    J Immunol; 1982 Aug; 129(2):509-14. PubMed ID: 6979575
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction of antigen-specific suppressor T cell hybridomas from spleen cells of mice primed for the persistent IgE antibody formation.
    Iwata M; Ishizaka K
    J Immunol; 1988 Nov; 141(10):3270-7. PubMed ID: 2460527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective roles of thymus-derived lymphocytes in the antibody response. I. Differential suppressive effect of carrier-primed T cells on hapten-specific IgM and IgG antibody responses.
    Tada T; Takemori T
    J Exp Med; 1974 Jul; 140(1):239-52. PubMed ID: 4134784
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of the biologic activities of IgE-binding factor. V. The role of glycosylation-enhancing factor and glycosylation-inhibiting factor in determining the nature of IgE-binding factors.
    Iwata M; Huff TF; Ishizaka K
    J Immunol; 1984 Mar; 132(3):1286-93. PubMed ID: 6363537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensitivity of passive cutaneous anaphylaxis in rats. II. Suppression of passive cutaneous anaphylactic reactions in rats infected with Nippostrongylus brasiliensis.
    Watanabe N; Kobayashi A
    Int Arch Allergy Appl Immunol; 1988; 86(4):436-9. PubMed ID: 3410559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The development of IgE+ memory B cells following primary IgE immune responses.
    Le Gros G; Schultze N; Walti S; Einsle K; Finkelman F; Kosco-Vilbois MH; Heusser C
    Eur J Immunol; 1996 Dec; 26(12):3042-7. PubMed ID: 8977302
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of L3T4+ and Lyt-2+ T cells in the IgE response and immunity to Nippostrongylus brasiliensis.
    Katona IM; Urban JF; Finkelman FD
    J Immunol; 1988 May; 140(9):3206-11. PubMed ID: 2966208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hapten-specific IgE antibody responses in mice. II. Cooperative interactions between adoptively transferred T and B lymphocytes in the development of IgE response.
    Hamaoka T; Katz DH; Benacerraf B
    J Exp Med; 1973 Sep; 138(3):538-56. PubMed ID: 4125546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. IgE antibody response to mite antigen in the mouse. Suppression of an established IgE antibody response by chemically modified antigen.
    Kudo K; Okudaira H; Miyamoto T; Nakagawa T; Horiuchi Y
    J Allergy Clin Immunol; 1978 Jan; 61(1):1-9. PubMed ID: 618941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of reaginic antibody production in mice. I. Suppression by antigen of IgE antibody production in vitro.
    Danneman PJ; Michael JG
    J Exp Med; 1977 Dec; 146(6):1534-48. PubMed ID: 562920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nippostrongylus brasiliensis: radioresistant IgE antibody-forming cells in infected rats.
    Watanabe N; Kobayashi A
    Exp Parasitol; 1989 Feb; 68(2):216-22. PubMed ID: 2466689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time course studies on rat IgE production in N. Brasiliensis infection.
    Jarrett EE; Haig DM
    Clin Exp Immunol; 1976 May; 24(2):346-51. PubMed ID: 1277582
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-level infection with the nematode Nippostrongylus brasiliensis induces significant and sustained specific and non-specific IgE antibody responses in rats.
    Yamada M; Nakazawa M; Kamata I; Arizono N
    Immunology; 1992 Jan; 75(1):36-40. PubMed ID: 1537600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hapten specific IgE antibody responses in mice. V. Differential resistance of IgE and IgG B lymphocytes to X-irradiation.
    Fox DA; Chiorazzi N; Katz DH
    J Immunol; 1976 Nov; 117(5 Pt 1):1622-8. PubMed ID: 1087320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The production of IgE and IgGa antibodies in normal rats and rats infected with Nippostrongylus brasiliensis.
    Meacock SC; Marsden CH
    Immunology; 1976 Apr; 30(4):491-6. PubMed ID: 178591
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of murine lymphocyte IgE receptors by flow microfluorometry.
    Katona IM; Urban JF; Titus JA; Stephany DA; Segal DM; Finkelman FD
    J Immunol; 1984 Sep; 133(3):1521-8. PubMed ID: 6235289
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immunosuppressive effects of glycosylation inhibiting factor on the IgE and IgG antibody response.
    Akasaki M; Jardieu P; Ishizaka K
    J Immunol; 1986 May; 136(9):3172-9. PubMed ID: 2937840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunologic and physicochemical properties of enhancing soluble factors for IgG and IgE antibody responses.
    Kishmoto T; Ishizaka K
    J Immunol; 1975 Apr; 114(4):1177-84. PubMed ID: 1167880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.