These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 5672526)
1. Lack of exchange of the 1-oxygen of glucose with water during glucose transport in human red blood cells. Rose IA; O'Connell EL; Langdon R Arch Biochem Biophys; 1968 Aug; 126(2):727-8. PubMed ID: 5672526 [No Abstract] [Full Text] [Related]
2. Metabolic incorporation of H Coelho M; Barosa C; Tavares L; Jones JG NMR Biomed; 2020 Nov; 33(11):e4395. PubMed ID: 32789995 [TBL] [Abstract][Full Text] [Related]
3. A simple resolution of the kinetic anomaly in the exchange of different sugars across the membrane of the human red blood cell. Eilam Y; Stein WD Biochim Biophys Acta; 1972 Apr; 266(1):161-73. PubMed ID: 5041086 [No Abstract] [Full Text] [Related]
4. Effect of anoxia on sugar transport in avian erythrocytes. Whitfield CF; Morgan HE Biochim Biophys Acta; 1973 Apr; 307(1):181-96. PubMed ID: 4736377 [No Abstract] [Full Text] [Related]
5. Unaltered ratio between 3HOH generation from D-[2-3H]glucose and D-[5-3H]glucose in rat erythrocytes exposed to cytochalasin B. Conget I; Malaisse WJ Horm Metab Res; 1994 Jun; 26(6):305-6. PubMed ID: 7927196 [No Abstract] [Full Text] [Related]
6. Effects of pressure on glucose transport in human erythrocytes. Thorne SD; Hall AC; Lowe AG FEBS Lett; 1992 Apr; 301(3):299-302. PubMed ID: 1577170 [TBL] [Abstract][Full Text] [Related]
7. The kinetics of selective biological transport. I. Determination of transport constants for sugar movements in human erythrocytes. Miller DM Biophys J; 1965 Jul; 5(4):407-15. PubMed ID: 5861699 [TBL] [Abstract][Full Text] [Related]
8. Separative pathways for urea and water, and for chloride in chicken erythrocytes. Brahm J; Wieth JO J Physiol; 1977 Apr; 266(3):727-49. PubMed ID: 17003 [TBL] [Abstract][Full Text] [Related]
9. Sugar transport asymmetry in human erythrocytes--the effect of bulk haemoglobin removal and the addition of methylxanthines. Challiss JR; Taylor LP; Holman GD Biochim Biophys Acta; 1980 Oct; 602(1):155-66. PubMed ID: 6158336 [TBL] [Abstract][Full Text] [Related]
10. The effects of replacement of water with D2O on D-glucose transfer in human erythrocytes [proceedings]. Baker GF; Naftalin RJ J Physiol; 1978 Jul; 280():25P. PubMed ID: 690874 [No Abstract] [Full Text] [Related]
11. The effect of homologous local anesthetics of the 4-alkoxy- and 4-alkylamino-benzoic acid-diethylamino-esthylester- hydrochloride series on the glucose transport in human erythrocytes. Lacko L; Wittke B; Lacko I J Cell Physiol; 1979 Jul; 100(1):169-74. PubMed ID: 313934 [TBL] [Abstract][Full Text] [Related]
12. Back exchange of 18O-labeled amino acids by erythrocytes: the possible role of amino acid transport. Clay KL; Murphy RC Biochem Biophys Res Commun; 1980 Aug; 95(3):1205-10. PubMed ID: 7417308 [No Abstract] [Full Text] [Related]
13. The effect of temperature on the distribution of stilboestrol and phenolphthalein between human red cells and their suspending medium. Prebble PM; Widdas WF J Physiol; 1969 Feb; 200(2):135P-136P. PubMed ID: 5764400 [No Abstract] [Full Text] [Related]
14. The insensitivity of the erythrocyte glucose transport system to borohydride reduction. Evans DR; White BC; Brown RK Biochem Biophys Res Commun; 1967 Sep; 28(5):699-704. PubMed ID: 6053196 [No Abstract] [Full Text] [Related]
15. Two-carrier models for mediated transport. II. Glucose and galactose equilibrium exchange experiments in human erythrocytes as a test for several two-carrier models. Eilam Y Biochim Biophys Acta; 1975 Sep; 401(3):364-9. PubMed ID: 1182144 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of glucose transport in human erythrocytes. Brahm J J Physiol; 1983 Jun; 339():339-54. PubMed ID: 6887027 [TBL] [Abstract][Full Text] [Related]
17. Glucose transport carrier activities in extensively washed human red cell ghosts. Jung CY; Carlson LM; Whaley DA Biochim Biophys Acta; 1971 Aug; 241(2):613-27. PubMed ID: 5159799 [No Abstract] [Full Text] [Related]
18. Evidence of high stability of the glucose transport carrier function in human red cell ghosts extensively washed in various media. Jung CY Arch Biochem Biophys; 1971 Sep; 146(1):215-26. PubMed ID: 5004123 [No Abstract] [Full Text] [Related]
19. [Glycolysis of human erythrocytes and permeability to orthophosphate ions]. Cartier P; Chedru J Bull Soc Chim Biol (Paris); 1966; 48(12):1421-37. PubMed ID: 5982799 [No Abstract] [Full Text] [Related]
20. Effects on water diffusion of inhibitors affecting various transport processes in human red blood cells. Benga G; Popescu O; Pop VI; Hodor P; Borza T Eur J Cell Biol; 1992 Oct; 59(1):219-23. PubMed ID: 1468442 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]