BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 567282)

  • 1. Diurnal variations in the motor activity of the rat: effects of inhibitors of the catecholamine synthesis.
    Lemmer B; Berger T
    Naunyn Schmiedebergs Arch Pharmacol; 1978 Jul; 303(3):251-6. PubMed ID: 567282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of inhibitors of the catecholamine synthesis on motor activity in the rat during light and darkness.
    Berger T; Lemmer B
    Pol J Pharmacol Pharm; 1976; 28(6):601-3. PubMed ID: 1012983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diurnal rhythm in the central dopamine turnover in the rat.
    Lemmer B; Berger T
    Naunyn Schmiedebergs Arch Pharmacol; 1978 Jul; 303(3):257-61. PubMed ID: 567283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proceedings: Influence of H44/68 and FLA63 on central catecholamines and motor activity under light and darkness.
    Lemmer B; Berger T
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 287 Suppl():R13. PubMed ID: 238144
    [No Abstract]   [Full Text] [Related]  

  • 5. Evidence for an increased catecholamine synthesis in rat adrenal glands following stimulation of peripheral dopamine receptors.
    Kujacic M; Carlsson A
    J Neural Transm Gen Sect; 1993; 92(2-3):73-9. PubMed ID: 8103662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noradrenaline synthesis from L-DOPA in rodents and its relationship to motor activity.
    Dolphin A; Jenner P; Marsden CD
    Pharmacol Biochem Behav; 1976 Oct; 5(4):431-9. PubMed ID: 1005491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the dopamine-beta-hydroxylase inhibitor FLA 63 on the kinetics of elimination of amphetamine in the rat.
    Jonsson J; Lewander T
    J Pharm Pharmacol; 1974 Nov; 26(11):907-9. PubMed ID: 4156566
    [No Abstract]   [Full Text] [Related]  

  • 8. The relative importance of dopamine and noradrenaline receptor stimulation for the restoration of motor activity in reserpine or alpha-methyl-p-tyrosine pre-treated mice.
    Dolphin AC; Jenner P; Marsden CD
    Pharmacol Biochem Behav; 1976 Jun; 4(6):661-70. PubMed ID: 981283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of brain monoamines in release of gonadotropin before proestrus in the cyclic rat.
    Terasawa E; Bridson WE; Davenport JW; Goy RW
    Neuroendocrinology; 1975; 18(4):345-58. PubMed ID: 1240617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of epinine formation in adrenal medulla and brain of rats during cold exposure and inhibition of dopamine beta-hydroxylase.
    Schümann HJ; Brodde OE
    Naunyn Schmiedebergs Arch Pharmacol; 1976 May; 293(2):139-44. PubMed ID: 958503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of the L-DOPA reversal of reserpine akinesia by inhibitors of dopamine-beta-hydroxylase.
    Dolphin A; Jenner P; Marsden CD
    Eur J Pharmacol; 1976 Jan; 35(1):135-44. PubMed ID: 1253815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress-related effects of various inhibitors of catecholamine synthesis in the mouse.
    Thornburg JE; Moore KE
    Arch Int Pharmacodyn Ther; 1971 Nov; 194(1):158-67. PubMed ID: 4399378
    [No Abstract]   [Full Text] [Related]  

  • 13. Proceedings: The mechanism of the effect of dopamine-beta-hydroxylase inhibitor FLA-63 on the L-DOPA reversal of reserpine akinesia.
    Dolphin A; Jenner P; Marsden CD
    Br J Pharmacol; 1975 Jun; 54(2):246P-247P. PubMed ID: 1148534
    [No Abstract]   [Full Text] [Related]  

  • 14. Antagonism of D-amphetamine by alpha-methyl-L-tyrosine: behavioral evidence for the participation of catecholamine stores and synthesis in the amphetamine stimulant response.
    Stolk JM; Rech RH
    Neuropharmacology; 1970 May; 9(3):249-63. PubMed ID: 4393182
    [No Abstract]   [Full Text] [Related]  

  • 15. The role of endogenous catecholamines in the regulation of electrocortical activity in the encephale isole cat.
    Keane PE; Candy JM; Bradley PB
    Electroencephalogr Clin Neurophysiol; 1976 Dec; 41(6):561-70. PubMed ID: 62650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain-dependency in motor activity and in concentration and turnover of catecholamines in synchronized rats.
    Lemmer B; Caspari-Irving G; Weimer R
    Pharmacol Biochem Behav; 1981 Aug; 15(2):173-8. PubMed ID: 6118882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some catecholamine inhibitors do not cause accumulation of nuclear estrogen receptors in rat hypothalamus and anterior pituitary gland.
    Blaustein JD; Brown TJ; McElroy JF
    Neuroendocrinology; 1986; 43(2):143-9. PubMed ID: 2873523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian variations in the activity of tyrosine hydroxylase, tyrosine aminotransferase, and tryptophan hydroxylase: relationship to catecholamine metabolism.
    Cahill AL; Ehret CF
    J Neurochem; 1981 Nov; 37(5):1109-15. PubMed ID: 6117601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo voltammetric monitoring of catecholamine metabolism in the A1 and A2 regions of the rat medulla oblongata.
    Suaud-Chagny MF; Steinberg R; Mermet C; Biziere K; Gonon F
    J Neurochem; 1986 Oct; 47(4):1141-7. PubMed ID: 3091764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thyrotropin-releasing hormone in the pancreas and brain of the rat is regulated by central noradrenergic and dopaminergic pathways.
    Engler D; Chad D; Jackson IM
    J Clin Invest; 1982 Jun; 69(6):1310-20. PubMed ID: 6806317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.